-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
686 lines (567 loc) · 29.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
import argparse
import logging
import math
import os
import random
from diffusers import AutoPipelineForText2Image
import datasets
import torch
from accelerate import Accelerator, DistributedType
from accelerate.logging import get_logger
from accelerate.utils import set_seed
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
import transformers
from transformers import (
CONFIG_MAPPING,
MODEL_MAPPING,
AutoConfig,
SchedulerType,
get_scheduler,
)
from transformers.utils.versions import require_version
from torchvision import transforms
from torchvision.io import ImageReadMode, read_image
from torchvision.transforms.functional import crop
from transformers import AutoTokenizer
from load_datasets import load_wiki, load_laion_220, load_cropped_vg_regions
from nltk.tokenize import sent_tokenize
from models.gpt2.modeling_gpt2_fusion_layer import GPT2LMHeadModel
from models.gemma.modeling_gemma_fusion_layer import GemmaForCausalLM
from models.llama3.modeling_llama3_fusion_layer import LlamaForCausalLM
from models.bert.modeling_bert_fusion_layer import BertForMaskedLM
from models.opt.modeling_opt_fusion_layer import OPTForCausalLM
# check_min_version("4.36.0.dev0")
logger = get_logger(__name__)
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/language-modeling/requirements.txt")
MODEL_CONFIG_CLASSES = list(MODEL_MAPPING.keys())
MODEL_TYPES = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
# Transformation to convert PIL Images to tensors
to_tensor = transforms.ToTensor()
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
def parse_args():
parser = argparse.ArgumentParser(description="complete here")
parser.add_argument("--run_name", type=str, default='test')
parser.add_argument("--dataset_name", type=str, default=None,
help="The name of the dataset to use.")
parser.add_argument("--max_train_samples", type=str, default=None,
help="For debugging purposes or quicker training, truncate the number of training examples to this value if set.")
parser.add_argument("--model_name_or_path", type=str,
help="Path to pretrained model or model identifier from huggingface.co/models.", required=False)
parser.add_argument("--config_name", type=str, default=None,
help="Pretrained config name or path if not the same as model_name")
parser.add_argument("--tokenizer_name", type=str, default=None,
help="Pretrained tokenizer name or path if not the same as model_name")
parser.add_argument("--use_slow_tokenizer", action="store_true",
help="If passed, will use a slow tokenizer (not backed by the 🤗 Tokenizers library).")
parser.add_argument("--per_device_train_batch_size", type=int, default=8,
help="Batch size (per device) for the training dataloader.")
parser.add_argument("--learning_rate", type=float, default=5e-5,
help="Initial learning rate (after the potential warmup period) to use.")
parser.add_argument("--weight_decay", type=float, default=0, help="Weight decay to use.")
parser.add_argument("--num_train_epochs", type=int, default=1, help="Total number of training epochs to perform.")
parser.add_argument("--max_train_steps", type=int, default=None,
help="Total number of training steps to perform. If provided, overrides num_train_epochs.")
parser.add_argument("--gradient_accumulation_steps", type=int, default=1,
help="Number of updates steps to accumulate before performing a backward/update pass.")
parser.add_argument("--lr_scheduler_type", type=SchedulerType, default="linear", help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant",
"constant_with_warmup"])
parser.add_argument("--num_warmup_steps", type=int, default=0,
help="Number of steps for the warmup in the lr scheduler.")
parser.add_argument("--output_dir", type=str, default=None, help="Where to store the final model.")
parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.")
parser.add_argument("--model_type", type=str, default=None, help="Model type to use if training from scratch.",
choices=MODEL_TYPES)
parser.add_argument("--max_seq_length", type=int, default=1024,
help="The maximum total input sequence length after tokenization. Sequences longer than this will be truncated.")
parser.add_argument("--trust_remote_code", type=bool, default=False,
help="Whether or not to allow for custom models defined on the Hub in their own modeling files. This option should only be set to `True` for repositories you trust and in which you have read the code, as it will execute code present on the Hub on your local machine.")
parser.add_argument("--checkpointing_steps", type=str, default=None,
help="Whether the various states should be saved at the end of every n steps, or 'epoch' for each epoch.")
parser.add_argument("--resume_from_checkpoint", type=str, default=None,
help="If the training should continue from a checkpoint folder.")
parser.add_argument("--with_tracking", action="store_true",
help="Whether to enable experiment trackers for logging.")
parser.add_argument("--report_to", type=str, default="wandb",
help='The integration to report the results and logs to. Supported platforms are `"tensorboard"`, `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations. Only applicable when `--with_tracking` is passed.')
parser.add_argument("--low_cpu_mem_usage", action="store_true",
help="It is an option to create the model as an empty shell, then only materialize its parameters when the pretrained weights are loaded. If passed, LLM loading time and RAM consumption will be benefited.")
parser.add_argument("--pretrained_model", type=str, default=None,
help="Path to pretrained weights")
parser.add_argument("--max_elements", type=int, default=None,
help="Choose how many elements will be taken from each of the datasets, if None, the full training will be trained")
parser.add_argument("--shuffle_data", action="store_true",
help="Whether to shuffle the training set")
parser.add_argument("--run_bf16", action="store_true",
help="Whether to train with bfloat16")
args = parser.parse_args()
return args
def collate_fn_gemma(examples):
image_col = 'image_path'
images = [example[image_col] for example in examples]
input_ids = torch.tensor([example["input_ids"]for example in examples], dtype=torch.long)
attention_mask = torch.tensor([example["attention_mask"] for example in examples], dtype=torch.long)
non_zero_start = (input_ids != 0).long().argmax(dim=1)
min_index = non_zero_start.min() - 1
input_ids = input_ids[:, min_index:]
attention_mask = attention_mask[:, min_index:]
input_ids[input_ids[:, 1] != 0, 1] = 2
input_ids[:, 0] = 0
attention_mask[:, 0] = 0
if 'crop' in examples[0]:
crop = [example["crop"] for example in examples]
return {
"image_path": images,
"input_ids": input_ids,
"labels": input_ids,
"attention_mask": attention_mask,
"crop": crop,
}
return {
"image_path": images,
"input_ids": input_ids,
"labels": input_ids,
"attention_mask": attention_mask,
}
def collate_fn_bert(examples):
def mask_tokens(inputs, mlm_probability=0.20):
"""
Prepare masked tokens inputs/labels for masked language modeling: 80% MASK, 10% random, 10% original.
"""
labels = inputs.clone()
# We sample a few tokens in each sequence for MLM training (with probability `self.mlm_probability`)
probability_matrix = torch.full(labels.shape, mlm_probability)
special_tokens_mask = torch.zeros_like(inputs).bool()
special_tokens_mask[torch.where((inputs == 101) | (inputs == 102) | (inputs == 0))] = True
probability_matrix.masked_fill_(special_tokens_mask, value=0.0)
masked_indices = torch.bernoulli(probability_matrix).bool()
labels[~masked_indices] = -100 # We only compute loss on masked tokens
# 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK])
indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).bool() & masked_indices
inputs[indices_replaced] = 103
# 10% of the time, we replace masked input tokens with random word
indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).bool() & masked_indices & ~indices_replaced
random_words = torch.randint(30522, labels.shape, dtype=torch.long)
inputs[indices_random] = random_words[indices_random]
# The rest of the time (10% of the time) we keep the masked input tokens unchanged
return inputs, labels
# pixel_values = torch.stack([example["pixel_values"] for example in examples])
# crop = [example["crop"] for example in examples]
image_path = [example["image_path"] for example in examples]
input_ids = torch.tensor([example["input_ids"] for example in examples], dtype=torch.long)
attention_mask = torch.tensor([example["attention_mask"] for example in examples], dtype=torch.long)
max_index = 100
input_ids = input_ids[:, :max_index]
attention_mask = attention_mask[:, :max_index]
input_ids, labels = mask_tokens(input_ids)
# Mask of elements not allowed to be replaced
mask = ((input_ids != 101) & (input_ids != 102) & (input_ids != 0))
# Check if 103 exists in any vector
exists_103 = torch.any(input_ids == 103, dim=1, keepdim=True)
# Broadcast exists_103 to match the shape of mask
exists_103 = exists_103.expand_as(mask)
# Create a mask of where to replace
replace_mask = (~exists_103.unsqueeze(1) & mask)
# Choose random index for each row where replacement is needed
row_indices = torch.nonzero(replace_mask, as_tuple=False)[:, 0]
unique_row_indices = row_indices.unique()
replace_indices = torch.stack(
[unique_row_indices, torch.randint(2, 10, size=(len(unique_row_indices),))], dim=1)
# Replace with 103
labels[replace_indices[:, 0], replace_indices[:, 1]] = input_ids[replace_indices[:, 0], replace_indices[:, 1]]
input_ids[replace_indices[:, 0], replace_indices[:, 1]] = 103
return {
"image_path": image_path,
"input_ids": input_ids,
"labels": labels,
"attention_mask": attention_mask,
# "crop": crop,
}
def collate_fn_gpt2(examples):
image_col = 'image_path'
images = [example[image_col] for example in examples]
input_ids = torch.tensor([example["input_ids"] for example in examples], dtype=torch.long)
attention_mask = torch.tensor([example["attention_mask"] for example in examples], dtype=torch.long)
non_zero_start = (input_ids == 50256).long().argmax(dim=1)
max_index = non_zero_start.max()
input_ids = input_ids[:, :max_index]
attention_mask = attention_mask[:, :max_index]
if 'crop' in examples[0]:
crop = [example["crop"] for example in examples]
return {
"image_path": images,
"input_ids": input_ids,
"labels": input_ids,
"attention_mask": attention_mask,
"crop": crop,
}
return {
"image_path": images,
"input_ids": input_ids,
"labels": input_ids,
"attention_mask": attention_mask,
}
def collate_fn_opt(examples):
image_col = 'image_path'
images = [example[image_col] for example in examples]
input_ids = torch.tensor([example["input_ids"] for example in examples], dtype=torch.long)
attention_mask = torch.tensor([example["attention_mask"] for example in examples], dtype=torch.long)
non_zero_start = (input_ids == 1).long().argmax(dim=1)
max_index = non_zero_start.max()
input_ids = input_ids[:, :max_index]
attention_mask = attention_mask[:, :max_index]
if 'crop' in examples[0]:
crop = [example["crop"] for example in examples]
return {
"image_path": images,
"input_ids": input_ids,
"labels": input_ids,
"attention_mask": attention_mask,
"crop": crop,
}
return {
"image_path": images,
"input_ids": input_ids,
"labels": input_ids,
"attention_mask": attention_mask,
}
def collate_fn_llama(examples):
image_col = 'image_path'
images = [example[image_col] for example in examples]
input_ids = torch.tensor([example["input_ids"][:100] for example in examples], dtype=torch.long)
attention_mask = torch.tensor([example["attention_mask"][:100] for example in examples], dtype=torch.long)
non_zero_start = (input_ids == 128001).long().argmax(dim=1)
max_index = non_zero_start.max()
input_ids = input_ids[:, :max_index]
attention_mask = attention_mask[:, :max_index]
if 'crop' in examples[0]:
crop = [example["crop"] for example in examples]
return {
"image_path": images,
"input_ids": input_ids,
"labels": input_ids,
"attention_mask": attention_mask,
"crop": crop,
}
return {
"image_path": images,
"input_ids": input_ids,
"labels": input_ids,
"attention_mask": attention_mask,
}
def main():
args = parse_args()
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["project_dir"] = args.output_dir
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
if accelerator.is_local_main_process:
datasets.utils.logging.set_verbosity_warning()
transformers.utils.logging.set_verbosity_info()
else:
datasets.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
if args.seed is not None:
set_seed(args.seed)
# Handle the repository creation
if accelerator.is_main_process:
if args.output_dir is not None:
os.makedirs(args.output_dir, exist_ok=True)
accelerator.wait_for_everyone()
# Load pretrained model and tokenizer
if args.config_name:
config = AutoConfig.from_pretrained(args.config_name, trust_remote_code=args.trust_remote_code)
elif args.model_name_or_path:
config = AutoConfig.from_pretrained(args.model_name_or_path, trust_remote_code=args.trust_remote_code)
else:
config = CONFIG_MAPPING[args.model_type]()
logger.warning("You are instantiating a new config instance from scratch.")
if args.tokenizer_name:
tokenizer = AutoTokenizer.from_pretrained(
args.tokenizer_name, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code
)
elif args.model_name_or_path:
tokenizer = AutoTokenizer.from_pretrained(
args.model_name_or_path, use_fast=not args.use_slow_tokenizer, trust_remote_code=args.trust_remote_code
)
else:
raise ValueError(
"You are instantiating a new tokenizer from scratch. This is not supported by this script. "
"You can do it from another script, save it, and load it from here, using --tokenizer_name."
)
model_dtype = torch.bfloat16 if args.run_bf16 else torch.float
accelerator.wait_for_everyone()
if "gpt2" in args.model_name_or_path:
model = GPT2LMHeadModel.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
low_cpu_mem_usage=args.low_cpu_mem_usage,
trust_remote_code=args.trust_remote_code,
torch_dtype=model_dtype,
)
tokenizer.pad_token = tokenizer.eos_token
if 'bert' in args.model_name_or_path:
model = BertForMaskedLM.from_pretrained(
args.model_name_or_path,
from_tf=bool(".ckpt" in args.model_name_or_path),
config=config,
low_cpu_mem_usage=args.low_cpu_mem_usage,
trust_remote_code=args.trust_remote_code,
torch_dtype=model_dtype,
)
elif 'gemma' in args.model_name_or_path:
num_added_tokens = tokenizer.add_tokens('<image>')
config.image_token_index = tokenizer('<image>')[0].ids[1]
config.ignore_index = -100
config.pad_token_id = 0
model = GemmaForCausalLM.from_pretrained(args.model_name_or_path, torch_dtype=model_dtype, config=config)
elif 'llama' in args.model_name_or_path:
config.ignore_index = -100
config.pad_token_id = 128001
tokenizer.pad_token = tokenizer.eos_token
model = LlamaForCausalLM.from_pretrained(args.model_name_or_path, torch_dtype=model_dtype, config=config)
elif 'opt' in args.model_name_or_path:
config.ignore_index = -100
model = OPTForCausalLM.from_pretrained(args.model_name_or_path, torch_dtype=model_dtype, config=config)
processor = model.processor
if args.pretrained_model is not None:
modules = torch.load(f'{args.pretrained_model}.bin')
new_modules = modules.copy()
for key in modules.keys():
new_modules[key[7:]] = modules[key]
del new_modules[key]
model.load_state_dict(new_modules)
del new_modules, modules
dataset_lst = []
if 'wiki' in args.dataset_name:
pipe = AutoPipelineForText2Image.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16)
pipe.to("cuda")
if 'wiki' in args.dataset_name:
dataset_lst.append(load_wiki(args, tokenizer))
if 'laion_220' in args.dataset_name:
short = 'short' in args.dataset_name
dataset_lst.append(load_laion_220(args, tokenizer, short))
if 'cropped_vg' in args.dataset_name:
dataset_lst.append(load_cropped_vg_regions(args, tokenizer))
if args.max_elements is not None:
if args.shuffle_data:
dataset_lst = [
dataset.shuffle(seed=42).select(range(min(len(dataset), args.max_elements)))
for dataset in dataset_lst
]
else:
dataset_lst = [dataset_lst[i].select(range(min(len(dataset_lst[i]),
args.max_elements))) for i in range(len(dataset_lst))]
train_dataset = datasets.concatenate_datasets(
dataset_lst
)
del dataset_lst
# eval_dataset = load_coco(args, tokenizer, valid_set=True)
if "gemma" in args.model_name_or_path:
fn = collate_fn_gemma
elif "llama" in args.model_name_or_path:
fn = collate_fn_llama
elif "bert" in args.model_name_or_path:
fn = collate_fn_bert
elif "gpt2" in args.model_name_or_path:
fn = collate_fn_gpt2
elif "opt" in args.model_name_or_path:
fn = collate_fn_opt
dataloader_params = {
"batch_size": args.per_device_train_batch_size,
"collate_fn": fn,
"num_workers": 0,
"shuffle": args.shuffle_data
}
train_dataloader = DataLoader(train_dataset, **dataloader_params)
model.requires_grad_(False)
optimizer_grouped_parameters = []
model.mm_proj.requires_grad_(True)
optimizer_grouped_parameters += list(model.mm_proj.parameters())
model.fusion_layer.requires_grad_(True)
optimizer_grouped_parameters += list(model.fusion_layer.parameters())
optimizer = torch.optim.AdamW(optimizer_grouped_parameters, lr=args.learning_rate,
weight_decay=args.weight_decay)
# Note -> the training dataloader needs to be prepared before we grab his length below (cause its length will be
# shorter in multiprocess)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
# model, optimizer, train_dataloader, eval_dataloader, lr_scheduler = accelerator.prepare(
# model, optimizer, train_dataloader, eval_dataloader, lr_scheduler
# )
model, optimizer, train_dataloader, lr_scheduler = accelerator.prepare(
model, optimizer, train_dataloader, lr_scheduler
)
# On TPU, the tie weights in our model have been disconnected, so we need to restore the ties.
if accelerator.distributed_type == DistributedType.TPU:
model.tie_weights()
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# Figure out how many steps we should save the Accelerator states
checkpointing_steps = args.checkpointing_steps
if checkpointing_steps is not None and checkpointing_steps.isdigit():
checkpointing_steps = int(checkpointing_steps)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("vglm", experiment_config)
# Train!
total_batch_size = args.per_device_train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {args.per_device_train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
checkpoint_path = args.resume_from_checkpoint
path = os.path.basename(args.resume_from_checkpoint)
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
checkpoint_path = path
path = os.path.basename(checkpoint_path)
accelerator.print(f"Resumed from checkpoint: {checkpoint_path}")
accelerator.load_state(checkpoint_path)
# Extract `epoch_{i}` or `step_{i}`
training_difference = os.path.splitext(path)[0]
if "epoch" in training_difference:
starting_epoch = int(training_difference.replace("epoch_", "")) + 1
resume_step = None
completed_steps = starting_epoch * num_update_steps_per_epoch
else:
# need to multiply `gradient_accumulation_steps` to reflect real steps
resume_step = int(training_difference.replace("step_", "")) * args.gradient_accumulation_steps
starting_epoch = resume_step // len(train_dataloader)
completed_steps = resume_step // args.gradient_accumulation_steps
resume_step -= starting_epoch * len(train_dataloader)
# update the progress_bar if load from checkpoint
progress_bar.update(completed_steps)
total_loss = 0
for epoch in range(starting_epoch, args.num_train_epochs):
model.train()
if args.resume_from_checkpoint and epoch == starting_epoch and resume_step is not None:
# We skip the first `n` batches in the dataloader when resuming from a checkpoint
active_dataloader = accelerator.skip_first_batches(train_dataloader, resume_step)
else:
active_dataloader = train_dataloader
for step, batch in enumerate(active_dataloader):
with accelerator.accumulate(model):
images = []
indices = []
for i in range(len(batch['image_path'])):
if batch['image_path'][i] is None:
indices.append(i)
images.append(None) # This will be replaced by the generated image
else:
image = read_image(batch['image_path'][i], mode=ImageReadMode.RGB)
if "crop" in batch and batch['crop'][i] is not None:
x, y, width, height = [max(0, val) for val in batch['crop'][i]]
image = crop(image, top=y, left=x, height=height, width=width)
images.append(image)
# Decode prompts for missing images
prompts = tokenizer.batch_decode(batch['input_ids'][indices], skip_special_tokens=True)
prompts = [sent_tokenize(prompt) for prompt in prompts]
for i in range(len(prompts)):
if not prompts[i]:
prompts[i].append('random')
prompts = [random.choice(sentences) for sentences in prompts]
generated_images = []
# Generate images where originals were missing
# Adjust the function call according to your specific 'pipe' function
if prompts:
generated_images = \
pipe(prompts, num_inference_steps=1, guidance_scale=0.0)[0]
# Insert generated images into the correct positions in the images list
for index, gen_image in zip(indices, generated_images):
tensor_image = to_tensor(gen_image)
tensor_image = (tensor_image * 255).type(torch.uint8)
images[index] = tensor_image
del batch['image_path']
if "crop" in batch:
del batch['crop']
batch['pixel_values'] = processor(images=images, return_tensors="pt").pixel_values.to(
accelerator.unwrap_model(model).dtype).to(accelerator.unwrap_model(model).device)
# Model forward pass
outputs = model(**batch)
loss = outputs.loss
# We keep track of the loss at each epoch
if args.with_tracking:
total_loss += loss.detach().float()
accelerator.backward(loss)
# if accelerator.sync_gradients:
# params_to_clip = (
# itertools.chain(accelerator.unwrap_model(model).fusion_layer.parameters(),
# accelerator.unwrap_model(model).img_proj.parameters())
# )
# accelerator.clip_grad_norm_(params_to_clip, 1)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
if args.with_tracking:
accelerator.log(
{
"train_loss": loss.item(),
"epoch": epoch,
"step": completed_steps,
},
step=completed_steps,
)
total_loss = 0
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
logs = {"loss": loss.detach().item()}
progress_bar.set_postfix(**logs)
completed_steps += 1
if isinstance(checkpointing_steps, int):
if completed_steps % checkpointing_steps == 0:
output_dir = f"step_{completed_steps}"
if args.output_dir is not None:
output_dir = os.path.join(args.output_dir, output_dir)
accelerator.save_state(output_dir)
if completed_steps >= args.max_train_steps:
break
if accelerator.is_main_process:
torch.save(model.state_dict(), f'{args.output_dir}/{args.run_name}_{epoch}.bin')
if __name__ == "__main__":
main()