-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain_vaepriorflow.py
278 lines (224 loc) · 10.7 KB
/
train_vaepriorflow.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.init as init
import glob
import json
import argparse
import os
import random
import numpy as np
from time import gmtime, strftime
from sklearn.metrics.pairwise import cosine_similarity
from collections import Counter
from vaeflow.glow import Glow
import classifier
from dataset_GBU import FeatDataLayer, DATA_LOADER
import os
parser = argparse.ArgumentParser()
parser.add_argument('--dataset', default='AWA1', help='dataset: CUB, AWA1, AWA2, SUN')
parser.add_argument('--dataroot', default='./data', help='path to dataset')
parser.add_argument('--validation', action='store_true', default=False, help='enable cross validation mode')
parser.add_argument('--workers', type=int, help='number of data loading workers', default=4)
parser.add_argument('--image_embedding', default='res101', type=str)
parser.add_argument('--class_embedding', default='att', type=str)
parser.add_argument('--niter', type=int, default=25000, help='number of epochs to train for')
parser.add_argument('--nepoch', type=int, default=1000, help='number of epochs to train for')
parser.add_argument('--lr', type=float, default=1e-4, help='learning rate to train generater')
parser.add_argument('--classifier_lr', type=float, default=0.001, help='learning rate to train softmax classifier')
parser.add_argument('--weight_decay', type=float, default=0.001, help='weight_decay')
parser.add_argument('--batchsize', type=int, default=64, help='input batch size')
parser.add_argument('--nSample', type=int, default=496*12, help='number features to generate per class')
parser.add_argument('--resume', type=str, help='the model to resume')
parser.add_argument('--disp_interval', type=int, default=20)
parser.add_argument('--save_interval', type=int, default=10000)
parser.add_argument('--evl_interval', type=int, default=600)
parser.add_argument('--manualSeed',default=None, type=int, help='manual seed')#25820 52.8 CUB SUN 6942 42.8
parser.add_argument('--Knn', type=int, default=20, help='K value')
parser.add_argument('--gpu', default='0', type=str, help='index of GPU to use')
opt = parser.parse_args()
if opt.manualSeed is None:
opt.manualSeed = random.randint(1, 10000)
print("Random Seed: ", opt.manualSeed)
np.random.seed(opt.manualSeed)
random.seed(opt.manualSeed)
torch.manual_seed(opt.manualSeed)
torch.cuda.manual_seed_all(opt.manualSeed)
import torch.backends.cudnn as cudnn
cudnn.benchmark = True
print('Running parameters:')
print(json.dumps(vars(opt), indent=4, separators=(',', ': ')))
def train():
dataset = DATA_LOADER(opt)
opt.C_dim = dataset.att_dim
opt.X_dim = dataset.feature_dim
opt.y_dim = dataset.ntrain_class
data_layer = FeatDataLayer(dataset.train_label.numpy(), dataset.train_feature.numpy(), opt)
result_zsl_knn = Result()
result_gzsl_soft = Result()
netG = Glow(classes=opt.y_dim,condition_dim=opt.C_dim).cuda()
out_dir = 'out/{}/shuffle'.format(opt.dataset)
os.makedirs(out_dir, exist_ok=True)
print("The output dictionary is {}".format(out_dir))
log_dir = out_dir + '/log_{}.txt'.format(opt.dataset)
with open(log_dir, 'w') as f:
f.write('Training Start:')
f.write(strftime("%a, %d %b %Y %H:%M:%S +0000", gmtime()) + '\n')
start_step = 0
if opt.resume:
if os.pathls\
.isfile(opt.resume):
print("=> loading checkpoint '{}'".format(opt.resume))
checkpoint = torch.load(opt.resume)
netG.load_state_dict(checkpoint['state_dict_G'])
train_z = checkpoint['latent_z'].cuda()
start_step = checkpoint['it']
print(checkpoint['log'])
else:
print("=> no checkpoint found at '{}'".format(opt.resume))
initial=True
optimizerG = optim.Adam(netG.parameters(), lr=opt.lr)
for it in range(start_step, opt.niter+1):
blobs = data_layer.forward()
feat_data = blobs['data'] # image data
labels = blobs['labels'].astype(int) # class labels
idx = blobs['idx'].astype(int)
C = np.array([dataset.train_att[i,:] for i in labels])
L = torch.from_numpy(labels).cuda()
C = torch.from_numpy(C.astype('float32')).cuda()
X = torch.from_numpy(feat_data).cuda()
X = X.view(*X.shape, 1, 1)
if initial is True:
netG(x=X, y_onehot=C, reverse=False)
initial = False
z, nll,vaeloss, y_logit = netG(x=X, y_onehot=C,reverse=False)
loss_generative = Glow.loss_generative(nll)
loss_classes = Glow.loss_class(y_logit, L)
loss = loss_generative +vaeloss + loss_classes * 0.01
netG.zero_grad()
optimizerG.zero_grad()
loss.backward()
optimizerG.step()
if it % opt.disp_interval == 0 and it:
log_text = 'Iter-[{}/{}]; epoch: {} Gloss: {:.3f} vaeloss: {:.3f} clsloss: {:.3f}'.format(it, opt.niter, it//opt.evl_interval,float(loss_generative),float(vaeloss),float(loss_classes))
log_print(log_text, log_dir)
if it % opt.evl_interval == 0 and it:
netG.eval()
gen_feat, gen_label = synthesize_feature_test(netG, dataset, 300,0.5,opt)
""" ZSL"""
acc = eval_zsl_knn(gen_feat.numpy(), gen_label.numpy(), dataset)
result_zsl_knn.update(it, acc)
log_print("{}nn Classifer: ".format(opt.Knn), log_dir)
log_print("Accuracy is {:.2f}%, Best_acc [{:.2f}% | Iter-{}]".format(acc, result_zsl_knn.best_acc,
result_zsl_knn.best_iter), log_dir)
gen_feat, gen_label = synthesize_feature_test(netG, dataset, opt.nSample,1.0,opt)
""" GZSL"""
# note test label need be shift with offset ntrain_class
train_X = torch.cat((dataset.train_feature, gen_feat), 0)
train_Y = torch.cat((dataset.train_label, gen_label+dataset.ntrain_class), 0)
cls = classifier.CLASSIFIER(train_X, train_Y, dataset, dataset.ntrain_class + dataset.ntest_class,
True, opt.classifier_lr, 0.5, 25, opt.nSample, True)
result_gzsl_soft.update_gzsl(it, cls.acc_unseen, cls.acc_seen, cls.H)
log_print("GZSL Softmax:", log_dir)
log_print("U->T {:.2f}% S->T {:.2f}% H {:.2f}% Best_H [{:.2f}% {:.2f}% {:.2f}% | Iter-{}]".format(
cls.acc_unseen, cls.acc_seen, cls.H, result_gzsl_soft.best_acc_U_T, result_gzsl_soft.best_acc_S_T,
result_gzsl_soft.best_acc, result_gzsl_soft.best_iter), log_dir)
if result_zsl_knn.save_model:
files2remove = glob.glob(out_dir + '/Best_model_ZSL_*')
for _i in files2remove:
os.remove(_i)
save_model(it, netG, opt.manualSeed, log_text,
out_dir + '/Best_model_ZSL_Acc_{:.2f}.tar'.format(result_zsl_knn.acc_list[-1]))
if result_gzsl_soft.save_model:
files2remove = glob.glob(out_dir + '/Best_model_GZSL_*')
for _i in files2remove:
os.remove(_i)
save_model(it, netG, opt.manualSeed, log_text,
out_dir + '/Best_model_GZSL_H_{:.2f}_S_{:.2f}_U_{:.2f}.tar'.format(result_gzsl_soft.best_acc,
result_gzsl_soft.best_acc_S_T,
result_gzsl_soft.best_acc_U_T))
netG.train()
if it % opt.save_interval == 0 and it:
save_model(it, netG, opt.manualSeed, log_text,
out_dir + '/Iter_{:d}.tar'.format(it))
print('Save model to ' + out_dir + '/Iter_{:d}.tar'.format(it))
def log_print(s, log):
print(s)
with open(log, 'a') as f:
f.write(s + '\n')
def getloss(pred, x, z, opt):
loss = 1/(2*opt.sigma**2) * torch.pow(x - pred, 2).sum() + 1/2 * torch.pow(z, 2).sum()
loss /= x.size(0)
return loss
def save_model(it, netG, random_seed, log, fout):
torch.save({
'it': it + 1,
'state_dict_G': netG.state_dict(),
'random_seed': random_seed,
'log': log,
}, fout)
def synthesize_feature_test(netG, dataset, nSample,tempture,opt):
gen_feat = torch.FloatTensor(dataset.ntest_class * nSample, opt.X_dim)
gen_label = np.zeros([0])
with torch.no_grad():
for i in range(dataset.ntest_class):
text_feat = np.tile(dataset.test_att[i].astype('float32'), (nSample, 1))
text_feat = torch.from_numpy(text_feat).cuda()
G_sample,_=netG(z=None, y_onehot=text_feat, eps_std=tempture, reverse=True)
G_sample=G_sample.view(*G_sample.shape[:2])
gen_feat[i*nSample:(i+1)*nSample] = G_sample
gen_label = np.hstack((gen_label, np.ones([nSample])*i))
return gen_feat, torch.from_numpy(gen_label.astype(int))
def eval_zsl_knn(gen_feat, gen_label, dataset):
# cosince predict K-nearest Neighbor
n_test_sample = dataset.test_unseen_feature.shape[0]
sim = cosine_similarity(dataset.test_unseen_feature, gen_feat)
# only count first K nearest neighbor
idx_mat = np.argsort(-1 * sim, axis=1)[:, 0:opt.Knn]
label_mat = gen_label[idx_mat.flatten()].reshape((n_test_sample,-1))
preds = np.zeros(n_test_sample)
for i in range(n_test_sample):
label_count = Counter(label_mat[i]).most_common(1)
preds[i] = label_count[0][0]
acc = eval_MCA(preds, dataset.test_unseen_label.numpy()) * 100
return acc
def eval_MCA(preds, y):
cls_label = np.unique(y)
acc = list()
for i in cls_label:
acc.append((preds[y == i] == i).mean())
return np.asarray(acc).mean()
class Result(object):
def __init__(self):
self.best_acc = 0.0
self.best_iter = 0.0
self.best_acc_S_T = 0.0
self.best_acc_U_T = 0.0
self.acc_list = []
self.iter_list = []
self.save_model = False
def update(self, it, acc):
self.acc_list += [acc]
self.iter_list += [it]
self.save_model = False
if acc > self.best_acc:
self.best_acc = acc
self.best_iter = it
self.save_model = True
def update_gzsl(self, it, acc_u, acc_s, H):
self.acc_list += [H]
self.iter_list += [it]
self.save_model = False
if H > self.best_acc:
self.best_acc = H
self.best_iter = it
self.best_acc_U_T = acc_u
self.best_acc_S_T = acc_s
self.save_model = True
def weights_init(m):
classname = m.__class__.__name__
if 'Linear' in classname:
init.normal_(m.weight.data, mean=0, std=0.02)
init.constant_(m.bias, 0.0)
if __name__ == "__main__":
train()