-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy pathconvert_format.py
125 lines (108 loc) · 5.54 KB
/
convert_format.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import sklearn.decomposition as sk_decomposition
import os
import pandas as pd
import numpy as np
import random
import json
import gc
from gensim.models import Word2Vec
import multiprocessing
from collections import Counter
from sklearn import preprocessing
import scipy.special as special
from pandas import DataFrame, Series
from collections import Counter
np.random.seed(2019)
random.seed(2019)
## SVD to
for file,dim in [('data/video_w2v.pkl',32),('data/audio_w2v.pkl',64)]:
if file[-3:]=="pkl":
df=pd.read_pickle(file)
else:
df=pd.read_csv(file)
pca = sk_decomposition.PCA(n_components=dim,whiten=False,svd_solver='auto')
pca.fit(df[df.columns[1:]])
df1=pd.DataFrame(pca.transform(df[df.columns[1:]]))
df1.columns=df.columns[1:dim+1]
df1[df.columns[0]]=df[df.columns[0]].values
df1.to_pickle(file[:-4]+'_svd_'+str(dim)+'.pkl')
def norm(train_df,test_df,features):
df=pd.concat([train_df,test_df])[features]
scaler = preprocessing.QuantileTransformer(random_state=0)
scaler.fit(df[features])
train_df[features]=scaler.transform(train_df[features])
test_df[features]=scaler.transform(test_df[features])
for path1,path2,flag in [('data/train_dev.pkl','data/dev.pkl','dev')]:
print(path1,path2)
train_df=pd.read_pickle(path1)
test_df=pd.read_pickle(path2)
print(train_df.shape,test_df.shape)
float_features=['uid_did_nunique', 'uid_did_count', 'uid_channel_nunique', 'did_video_duration_min',
'did_video_duration_max', 'did_video_duration_mean', 'did_video_duration_std',
'channel_video_duration_min', 'channel_video_duration_max', 'channel_video_duration_mean',
'channel_video_duration_std', 'uid_item_id_unique_mean', 'uid_author_id_unique_mean',
'uid_channel_unique_mean', 'did_item_id_unique_mean', 'did_author_id_unique_mean',
'did_channel_unique_mean', 'uid_item_id_unique_var', 'uid_author_id_unique_var',
'uid_channel_unique_var', 'did_item_id_unique_var', 'did_author_id_unique_var',
'did_channel_unique_var', 'author_id_title_cont_skew', 'author_id_title_cont_mean',
'author_id_title_cont_std', 'did_title_cont_skew', 'did_title_cont_mean',
'did_title_cont_std', 'uid_channel_title_cont_skew', 'uid_channel_title_cont_mean',
'uid_channel_title_cont_std', 'item_id_uid_nunique', 'item_id_uid_count',
'author_id_item_id_nunique', 'author_id_item_id_count', 'uid_user_city_nunique',
'uid_author_id_nunique', 'channel_user_city_nunique', 'did_video_duration_skew',
'channel_video_duration_skew', 'title_mean', 'uid_title_mean_mean',
'uid_title_mean_std', 'uid_title_mean_skew', 'author_id_title_mean_mean',
'author_id_title_mean_std', 'author_id_title_mean_skew', 'did_title_mean_mean',
'did_title_mean_std', 'did_title_mean_skew', 'uid_channel_title_mean_mean',
'uid_channel_title_mean_std', 'uid_channel_title_mean_skew',
'uid_num_of_author_mean','uid_num_of_author_var','uid_num_of_author_fft_var',]
train_df=train_df.fillna(-1)
test_df=test_df.fillna(-1)
norm(train_df,test_df,float_features)
print(train_df[float_features])
k=10
train_df=train_df.sample(frac=1)
test_df=test_df.sample(frac=0.1)
train=[(path2[:-4]+'_NN.pkl',test_df)]
for i in range(k):
train.append((path1[:-4]+'_NN_'+str(i)+'.pkl',train_df.iloc[int(i/k*len(train_df)):int((i+1)/k*len(train_df))]))
del train_df
gc.collect()
for file,temp in train:
print(file,temp.shape)
for f1,f2 in [('uid','item_id'),('uid','author_id'),('did','item_id'),('did','author_id')]:
col=f1
df = pd.read_pickle( 'data/' +f1+'_'+ f2+'_'+col +'_'+flag +'_deepwalk_64.pkl')
df = df.drop_duplicates([col])
fs = list(df)
fs.remove(col)
temp = pd.merge(temp, df, on=col, how='left')
print(temp.shape)
col=f2
df = pd.read_pickle( 'data/' +f1+'_'+ f2+'_'+col +'_'+flag +'_deepwalk_64.pkl')
df = df.drop_duplicates([col])
fs = list(df)
fs.remove(col)
temp = pd.merge(temp, df, on=col, how='left')
print(temp.shape)
print("done 1!")
for col in ['video','audio','author_id','uid','did','item_id']:
if col in ['audio']:
df = pd.read_pickle( 'data/' + col + '_w2v_svd_64.pkl')
col='item_id'
elif col in ['video']:
df = pd.read_pickle( 'data/' + col + '_w2v_svd_32.pkl')
col='item_id'
else:
df = pd.read_pickle( 'data/' + col + '_'+flag+'_w2v_128.pkl')
df = df.drop_duplicates([col])
fs = list(df)
fs.remove(col)
print(temp.shape)
temp = pd.merge(temp, df, on=col, how='left')
print(temp.shape)
print("done 2!")
temp=temp.fillna(0)
temp.to_pickle(file)
del temp
gc.collect()