-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathnlp_controller.py
220 lines (198 loc) · 8.41 KB
/
nlp_controller.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# -*- coding: utf-8 -*-
"""
nlp_controller.py
A general purpose interface to add annotations to data coming from all genres
"""
import logging
import os, io, sys, re, shutil
from argparse import ArgumentParser
from glob import glob
from time import sleep
from nlp_modules.marmot_tagger import MarmotTagger
from nlp_modules.dep_parser import DepParser
from nlp_modules.tt_tagger import TreeTaggerTagger
from nlp_modules.tt_tokenizer import TreeTaggerTokenizer
from nlp_modules.flair_sent_splitter import FlairSentSplitter
from nlp_modules.pos_tagger import PoSTagger
from nlp_modules.s_typer import STyper
from nlp_modules.xrenner_coreferencer import XrennerCoref
from nlp_modules.flair_edu_segmenter import FlairEDUSplitter
from nlp_modules.rst_parser import RSTParser
from nlp_modules.datetime_recognizer import DateTimeRecognizer
SCRIPT_DIR = os.path.dirname(os.path.realpath(__file__)) + os.sep
LIB_DIR = SCRIPT_DIR + "lib" + os.sep
BIN_DIR = SCRIPT_DIR + "bin" + os.sep
TTG_PATH = "treetagger" + os.sep
MODULES = {
"tt_tokenizer": TreeTaggerTokenizer,
"tt_tagger": TreeTaggerTagger,
"ensemble_tagger": PoSTagger,
"marmot_tagger": MarmotTagger,
"flair_sent_splitter": FlairSentSplitter,
"s_typer": STyper,
"dep_parser": DepParser,
"datetime_recognizer": DateTimeRecognizer,
"xrenner": XrennerCoref,
"flair_edu_splitter": FlairEDUSplitter,
"rst_parser": RSTParser
}
class NLPController:
def __init__(self, opts):
logging.info("Initializing NLP Controller...")
opts.update(
{"SCRIPT_DIR": SCRIPT_DIR, "LIB_DIR": LIB_DIR, "BIN_DIR": BIN_DIR, "TTG_PATH": TTG_PATH}
)
self.opts = opts
logging.info("Initializing NLP modules...")
module_slugs = opts["modules"]
self.input_dir = opts["input_dir"]
self.output_dir = opts["output_dir"]
if opts["lazy"]:
# use a generator to avoid initialization of all modules at once
self.pipeline = (MODULES[slug](opts) for slug in module_slugs)
else:
self.pipeline = [MODULES[slug](opts) for slug in module_slugs]
logging.info("Resolving pipeline module dependencies...")
satisfied = set()
for module in self.pipeline:
if any(req not in satisfied for req in module.__class__.requires):
formatted_reqs = [
f"{m.__class__.__name__}\t"
+ "{"
+ ",".join(str(dep) for dep in m.requires)
+ " -> "
+ ",".join(str(dep) for dep in m.provides)
+ "}"
for m in self.pipeline
]
raise Exception(
f"Invalid pipeline: module {module.__class__} requires "
f"{module.__class__.requires}, but pipeline only provides "
f"{satisfied}. Full pipeline requirements:\n" + "\n".join(formatted_reqs)
)
satisfied.update(module.provides)
for module in self.pipeline:
logging.info(f"Checking dependencies for module {module.__class__.__name__}...")
module.test_dependencies()
logging.info("NLPController initialization complete.\n")
def _init_output_dir(self, initial_dir_path):
"""Copy the input directory into the output directory."""
os.makedirs(os.path.join(initial_dir_path, "xml"), exist_ok=True)
filepaths = glob(os.path.join(self.input_dir, "**/*.xml"), recursive=True)
logging.info(f"Copying {len(filepaths)} files into {initial_dir_path}...")
for filepath in filepaths:
new_filepath = os.path.join(initial_dir_path, "xml", filepath.split(os.sep)[-1])
shutil.copy(filepath, new_filepath)
logging.info(f"Done copying initial files.\n")
def run(self):
"""Create the output directory and run every step of the pipeline in sequence,
creating a fresh directory for each step."""
begin_step = self.opts["begin_step"]
# init dirs if we're not skipping a step
if begin_step == 0:
last_dir_name = os.path.join(self.output_dir, "00_initial")
self._init_output_dir(last_dir_name)
steps = self.pipeline
i = 0
# if we are skipping steps, delete the dirs after the skipped steps
else:
last_dir_name = glob(os.path.join(self.output_dir, str(begin_step).zfill(2) + "*"))[0]
dirs_to_delete = [
glob(os.path.join(self.output_dir, str(i).zfill(2) + "*"))
for i in range(begin_step + 1, len(self.opts["modules"]) + 1)
]
for dirnames in dirs_to_delete:
if len(dirnames) == 1:
dirname = dirnames[0]
print(f"removing {dirname}")
shutil.rmtree(dirname)
steps = (MODULES[slug](self.opts) for slug in self.opts["modules"][self.opts["begin_step"] :])
i = self.opts["begin_step"]
for module in steps:
input_dir = last_dir_name
output_dir = os.path.join(self.output_dir, str(i + 1).zfill(2) + "_" + module.__class__.__name__)
shutil.copytree(input_dir, output_dir)
logging.info(f"Created directory {output_dir} from {input_dir}.")
logging.info(f"Running module {module.__class__.__name__}")
module.run(input_dir, output_dir)
last_dir_name = output_dir
i += 1
def main():
p = ArgumentParser()
p.add_argument("output_dir", help="The directory that output should be written to.")
p.add_argument(
"-i",
"--input-dir",
default="out",
help="The directory that holds the unprocessed XML files. "
"Useful for prototyping on a small set of documents.",
)
p.add_argument(
"-m",
"--modules",
nargs="+",
choices=MODULES.keys(),
default=[
"tt_tokenizer",
"flair_sent_splitter",
"ensemble_tagger",
"dep_parser",
"datetime_recognizer",
"s_typer",
"xrenner",
"flair_edu_splitter",
"rst_parser"
], # "ace_entities"
help="NLP pipeline modules, included in the order they are specified.",
)
p.add_argument(
"--overwrite",
action="store_true",
help=(
"By default, the pipeline will refuse to run if the output directory "
"already exists. Setting this flag will REMOVE all the data in the "
"output directory before new data is introduced."
),
)
p.add_argument(
"--use-gpu", action="store_true", help="Modules will attempt to use GPU if this flag is provided.",
)
p.add_argument(
"--begin-step",
type=int,
default=0,
help=(
"If provided, will begin the pipeline from the ZERO-INDEXED step "
"in the pipeline corresponding to this value. E.g., --begin-step 1"
" would resume step y in the pipeline [x y z]. Every other step "
"before the resumed step is assumed to have been executed successfully."
" If the value if this parameter is greater than 0, --overwrite is ignored."
),
)
p.add_argument(
"--lazy",
default=False,
action="store_true",
help="When true, skip all dependency checks and do not preload pipeline modules.",
)
opts = p.parse_args()
# Check if output directory already exists.
if os.path.exists(opts.output_dir):
if opts.overwrite and opts.begin_step == 0:
logging.warning(f"About to delete ALL data from {opts.output_dir}. Interrupt now if you want to keep it.")
for i in range(3, 0, -1):
print(f"Deleting in {i}s...\r", end="")
sleep(1)
shutil.rmtree(opts.output_dir)
os.mkdir(opts.output_dir)
logging.info(f"Deleted and re-created {opts.output_dir}.\n")
elif opts.begin_step == 0:
raise Exception(
"Output path " + opts.output_dir + " already exists. Use the flag --overwrite "
"if you know this and want to LOSE all the data in it."
)
controller = NLPController(vars(opts))
controller.run()
if __name__ == "__main__":
logging.basicConfig(level=logging.INFO)
main()