-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodels.py
262 lines (206 loc) · 9.79 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import torch
import collections
from array_api_compat import to_device
from utils import distributed_subset_order
def sequential_conv_model(device,
kernel_size=(3, 3, 3),
num_layers=6,
num_features=10,
batch_norm: bool = False,
dtype=torch.float32) -> torch.nn.Sequential:
"""simple sequential model consisting of 3D conv layers and PReLUs
Parameters
----------
device : optional
by default torch.device("cuda:0")
kernel_size : tuple, optional
kernel size of conv layers, by default (3, 3, 1)
num_layers : int, optional
number of conv layers, by default 6
num_features : int, optional
number of features, by default 10
batch_norm : bool, optional
use batch norm, by default False
dtype : optional
data type for conv layers, by default torch.float32
Returns
-------
Sequential model
"""
conv_net = collections.OrderedDict()
conv_net['conv_1'] = torch.nn.Conv3d(1,
num_features,
kernel_size,
padding='same',
device=device,
dtype=dtype)
if batch_norm:
conv_net['batch_norm_1'] = torch.nn.BatchNorm3d(num_features,
device=device)
conv_net['prelu_1'] = torch.nn.PReLU(device=device)
for i in range(num_layers - 2):
conv_net[f'conv_{i+2}'] = torch.nn.Conv3d(num_features,
num_features,
kernel_size,
padding='same',
device=device,
dtype=dtype)
if batch_norm:
conv_net[f'batch_norm_{i+2}'] = torch.nn.BatchNorm3d(num_features,
device=device)
conv_net[f'prelu_{i+2}'] = torch.nn.PReLU(device=device)
conv_net[f'conv_{num_layers}'] = torch.nn.Conv3d(num_features,
1,
kernel_size,
padding='same',
device=device,
dtype=dtype)
conv_net[f'prelu_{num_layers}'] = torch.nn.PReLU(device=device)
conv_net = torch.nn.Sequential(conv_net)
return conv_net
class DoubleConv3DBlock(torch.nn.Module):
"""convolution, batch norm, relu, convolution, batch norm, relu"""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self._double_conv = torch.nn.Sequential(
torch.nn.Conv3d(in_channels,
out_channels,
kernel_size=3,
padding='same'),
torch.nn.BatchNorm3d(out_channels), torch.nn.ReLU(inplace=True),
torch.nn.Conv3d(out_channels,
out_channels,
kernel_size=3,
padding='same',
bias=False), torch.nn.BatchNorm3d(out_channels),
torch.nn.ReLU(inplace=True))
def forward(self, x):
return self._double_conv(x)
class Unet3DDownBlock(torch.nn.Module):
"""maxpool downsampling followed by double conv block"""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self._maxpool_conv = torch.nn.Sequential(
torch.nn.MaxPool3d(2), DoubleConv3DBlock(in_channels,
out_channels))
def forward(self, x):
return self._maxpool_conv(x)
class Unet3DUpBlock(torch.nn.Module):
"""bilinear upsampling, concatenation, double conv block"""
def __init__(self, in_channels: int, out_channels: int):
super().__init__()
self._up = torch.nn.Upsample(scale_factor=2, mode='trilinear')
self._conv = DoubleConv3DBlock(in_channels, out_channels)
def forward(self, x1, x2):
x = torch.cat([x2, self._up(x1)], dim=1)
return self._conv(x)
class Unet3dFinalConv(torch.nn.Module):
def __init__(self, in_channels: int, out_channels: int = 1):
super().__init__()
self._conv = torch.nn.Conv3d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self._conv(x)
class Unet3D(torch.nn.Module):
"""3D Unet with 3D downsampling and upsampling blocks"""
def __init__(self, num_features: int = 8, num_input_channels: int = 1):
super().__init__()
self._num_features = num_features
self._num_input_channels = num_input_channels
self.first_double_conv = (DoubleConv3DBlock(self._num_input_channels,
self._num_features))
self.down1 = (Unet3DDownBlock(self._num_features,
2 * self._num_features))
self.down2 = (Unet3DDownBlock(2 * self._num_features,
4 * self._num_features))
self.down3 = (Unet3DDownBlock(4 * self._num_features,
4 * self._num_features))
self.up1 = (Unet3DUpBlock(8 * self._num_features,
2 * self._num_features))
self.up2 = (Unet3DUpBlock(4 * self._num_features,
1 * self._num_features))
self.up3 = (Unet3DUpBlock(2 * self._num_features, self._num_features))
self.final_conv = Unet3dFinalConv(self._num_features, 1)
def forward(self, x):
x1 = self.first_double_conv(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
y = self.up1(x4, x3)
y = self.up2(y, x2)
y = self.up3(y, x1)
return self.final_conv(y)
class SimpleOSEMVarNet(torch.nn.Module):
"""dummy cascaded model that includes layers combining projections and convolutions"""
def __init__(self, osem_update_modules: torch.nn.Module,
neural_net: torch.nn.Module, depth: int, device: str, fusion_mode : str = 'simple') -> None:
super().__init__()
self._osem_update_modules = osem_update_modules
self._num_subsets = len(osem_update_modules)
self._subset_order = distributed_subset_order(self._num_subsets)
self._neural_net = neural_net
self._depth = depth
self._neural_net_weight = torch.nn.Parameter(torch.tensor(0.5, device = device))
if fusion_mode in {'de_pierro', 'simple'}:
self._fusion_mode = fusion_mode
else:
raise ValueError('fusion_mode must be "de_pierro" or "simple"')
@property
def neural_net_weight(self) -> torch.Tensor:
return self._neural_net_weight
@property
def neural_net(self) -> torch.nn.Module:
return self._neural_net
@property
def fusion_mode(self) -> str:
return self._fusion_mode
def forward(self, x: torch.Tensor, emission_data_batch: torch.Tensor,
correction_batch: torch.Tensor,
contamination_batch: torch.Tensor,
adjoint_ones_batch: torch.Tensor) -> torch.Tensor:
for j in range(self._depth):
subset = self._subset_order[j % self._num_subsets]
x_em = self._osem_update_modules[subset](
x, emission_data_batch[subset, ...], correction_batch[subset,
...],
contamination_batch[subset, ...], adjoint_ones_batch[subset,
...])
if self._fusion_mode == 'de_pierro':
# De Pierro fusion which is guaranteed to be non-negative
x_sm = x + self._neural_net(x)
beta_nu = self._neural_net_weight/adjoint_ones_batch[subset,...]
denom = (1 - beta_nu*x_sm) + torch.sqrt((1 - beta_nu*x_sm)**2 + 4*beta_nu*x_em)
x = 2*x_em / denom
else:
# fusion of EM update and neural net update with trainable weight
# we use an ReLU activation to ensure that the output of each block is non-negative
x = torch.nn.ReLU()(x_em + self._neural_net_weight * self._neural_net(x))
return x
class PostReconNet(torch.nn.Module):
"""dummy cascaded model that includes layers combining projections and convolutions"""
def __init__(self, neural_net: torch.nn.Module) -> None:
super().__init__()
self._neural_net = neural_net
@property
def neural_net(self) -> torch.nn.Module:
return self._neural_net
def forward(self, x: torch.Tensor) -> torch.Tensor:
# fusion of EM update and neural net update with trainable weight
# we use an ReLU activation to ensure that the output of each block is non-negative
return torch.nn.ReLU()(x + self._neural_net(x))
if __name__ == '__main__':
import tempfile
from torch.utils.tensorboard import SummaryWriter
dev = "cpu"
dtype = torch.float32
x = torch.rand(4, 1, 128, 128, 16, dtype=dtype).to(dev)
model = Unet3D(num_features=32)
y = model(x)
print('number of trainable parameters:',
sum(p.numel() for p in model.parameters()))
tmp_run_dir = tempfile.TemporaryDirectory()
writer = SummaryWriter(tmp_run_dir.name)
writer.add_graph(model, x)
writer.close()
print(
f'run "tensorboard --logdir {tmp_run_dir.name}" to view model in tensorboard'
)