-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path06_osem_varnet.py
297 lines (236 loc) · 11.6 KB
/
06_osem_varnet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
"""miminal script that trains an OSEM varnet on simulated brainweb data
"""
from __future__ import annotations
import argparse
import json
from datetime import datetime
import utils
import parallelproj
import array_api_compat.torch as torch
from layers import EMUpdateModule
from models import Unet3D, SimpleOSEMVarNet, PostReconNet
from data import load_brain_image_batch, simulate_data_batch, download_brainweb_data
from pathlib import Path
parser = argparse.ArgumentParser(description='OSEM-VARNet reconstruction')
parser.add_argument('--num_datasets', type=int, default=60)
parser.add_argument('--num_training', type=int, default=40)
parser.add_argument('--num_validation', type=int, default=20)
parser.add_argument('--num_subsets', type=int, default=4)
parser.add_argument('--depth', type=int, default=8)
parser.add_argument('--num_epochs', type=int, default=500)
parser.add_argument('--num_epochs_post', type=int, default=500)
parser.add_argument('--batch_size', type=int, default=10)
parser.add_argument('--num_features', type=int, default=32)
parser.add_argument('--num_rings', type=int, default=4)
parser.add_argument('--radial_trim', type=int, default=181)
parser.add_argument('--random_seed', type=int, default=1)
parser.add_argument('--sens', type=float, default=1)
parser.add_argument('--voxel_size',
nargs='+',
type=float,
default=[2.5, 2.5, 2.66])
parser.add_argument('--fusion_mode', type=str, default = 'simple', choices=['simple', 'de_pierro'])
args = parser.parse_args()
num_datasets = args.num_datasets
num_training = args.num_training
num_validation = args.num_validation
num_subsets = args.num_subsets
depth = args.depth
num_epochs = args.num_epochs
num_epochs_post = args.num_epochs_post
batch_size = args.batch_size
num_features = args.num_features
num_rings = args.num_rings
radial_trim = args.radial_trim
random_seed = args.random_seed
sens = args.sens
voxel_size = tuple(args.voxel_size)
fusion_mode = args.fusion_mode
# device variable (cpu or cuda) that determines whether calculations
# are performed on the cpu or cuda gpu
if parallelproj.cuda_present:
dev = 'cuda'
else:
dev = 'cpu'
output_dir = Path(
'run_osem_varnet') / f'{datetime.now().strftime("%Y%m%d_%H%M%S")}'
output_dir.mkdir(exist_ok=True, parents=True)
with open(output_dir / 'input_cfg.json', 'w') as f:
json.dump(vars(args), f)
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
#--- setup the scanner / LOR geometry ---------------------------------------
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# setup a line of response descriptor that describes the LOR start / endpoints of
# a "narrow" clinical PET scanner with 9 rings
lor_descriptor = utils.DemoPETScannerLORDescriptor(torch,
dev,
num_rings=num_rings,
radial_trim=radial_trim)
axial_fov_mm = float(lor_descriptor.scanner.num_rings *
(lor_descriptor.scanner.ring_positions[1] -
lor_descriptor.scanner.ring_positions[0]))
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
#--- load the brainweb images -----------------------------------------------
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
# download and extract the brainweb PET/MR images into ./data if not present
download_brainweb_data()
# image properties
ids = tuple([i for i in range(num_datasets)])
emission_image_database, attenuation_image_database = load_brain_image_batch(
ids,
torch,
dev,
voxel_size=voxel_size,
axial_fov_mm=0.95 * axial_fov_mm,
verbose=False)
img_shape = tuple(emission_image_database.shape[2:])
#----------------------------------------------------------------------------
#----------------------------------------------------------------------------
subset_projectors = parallelproj.SubsetOperator([
utils.RegularPolygonPETProjector(
lor_descriptor,
img_shape,
voxel_size,
views=torch.arange(i,
lor_descriptor.num_views,
num_subsets,
device=dev)) for i in range(num_subsets)
])
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
print(f'simulating emission and correction data')
# simulate all emission and correction sinograms we need
emission_data_database, correction_database, contamination_database, adjoint_ones_database = simulate_data_batch(
emission_image_database,
attenuation_image_database,
subset_projectors,
sens=sens,
random_seed=random_seed)
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
# run OSEM reconstructions of the simulated data
osem_update_modules = [
EMUpdateModule(projector) for projector in subset_projectors.operators
]
osem_database = torch.ones((num_datasets, 1) + subset_projectors.in_shape,
device=dev,
dtype=torch.float32)
num_osem_iter = 102 // num_subsets
subset_order = utils.distributed_subset_order(num_subsets)
for i in range(num_osem_iter):
print(f'OSEM iteration {(i+1):003}/{num_osem_iter:003}', end='\r')
for j in range(num_subsets):
subset = subset_order[j]
osem_database = osem_update_modules[subset](
osem_database, emission_data_database[subset, ...],
correction_database[subset, ...],
contamination_database[subset, ...], adjoint_ones_database[subset,
...])
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
# model training
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
print('\npostrecon unet training\n')
post_recon_unet = PostReconNet(Unet3D(num_features=num_features).to(dev))
post_recon_unet.train()
loss_fn_post = torch.nn.MSELoss()
optimizer_post = torch.optim.Adam(post_recon_unet.parameters(), lr=1e-3)
loss_arr_post = torch.zeros(num_epochs_post)
min_val_loss_post = float('inf')
for epoch in range(num_epochs_post):
batch_inds = torch.split(torch.randperm(num_training), batch_size)
for ib, batch_ind in enumerate(batch_inds):
x_fwd_post = post_recon_unet(osem_database[batch_ind, ...])
loss_post = loss_fn_post(x_fwd_post, emission_image_database[batch_ind,
...])
print(
f'{(epoch+1):03}/{num_epochs_post:03} {(ib+1):03} {loss_post:.2E}',
end='\r')
# Backpropagation
loss_post.backward()
optimizer_post.step()
optimizer_post.zero_grad()
loss_arr_post[epoch] = loss_post
if (epoch + 1) % 20 == 0:
post_recon_unet.eval()
x_fwd_post = post_recon_unet(
osem_database[num_training:(num_training + num_validation), ...])
val_loss_post = loss_fn_post(
x_fwd_post, emission_image_database[num_training:(num_training +
num_validation),
...])
print(
f'{(epoch+1):03}/{num_epochs_post:03} train_loss {float(loss_post):.2E} val_loss {val_loss_post:.2E}'
)
post_recon_unet.train()
if val_loss_post < min_val_loss_post:
min_val_loss_post = val_loss_post
torch.save(post_recon_unet.neural_net.state_dict(),
output_dir / 'post_recon_model_best_state.pt')
torch.save(loss_arr_post, output_dir / 'training_loss_post.pt')
torch.save(post_recon_unet.neural_net.state_dict(),
output_dir / 'post_recon_model_last_state.pt')
del post_recon_unet
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
# model training
#--------------------------------------------------------------------------------
#--------------------------------------------------------------------------------
print('\nvarnet training\n')
unet = Unet3D(num_features=num_features).to(dev)
if fusion_mode == 'simple':
best_path = output_dir / 'post_recon_model_best_state.pt'
print(f'loading pre-trained weights from {best_path}')
unet.load_state_dict(torch.load(best_path))
osem_var_net = SimpleOSEMVarNet(osem_update_modules, unet, depth, dev, fusion_mode=fusion_mode)
print(f'fusion mode: {osem_var_net.fusion_mode}')
osem_var_net.train()
loss_fn = torch.nn.MSELoss()
optimizer = torch.optim.Adam(osem_var_net.parameters(), lr=1e-3)
loss_arr = torch.zeros(num_epochs)
min_val_loss = float('inf')
for epoch in range(num_epochs):
batch_inds = torch.split(torch.randperm(num_training), batch_size)
for ib, batch_ind in enumerate(batch_inds):
x_fwd = osem_var_net(osem_database[batch_ind, ...],
emission_data_database[:, batch_ind, ...],
correction_database[:, batch_ind, ...],
contamination_database[:, batch_ind, ...],
adjoint_ones_database[:, batch_ind, ...])
loss = loss_fn(x_fwd, emission_image_database[batch_ind, ...])
print(f'{(epoch+1):03}/{num_epochs:03} {(ib+1):03} {loss:.2E}',
end='\r')
# Backpropagation
loss.backward()
optimizer.step()
optimizer.zero_grad()
loss_arr[epoch] = loss
if (epoch + 1) % 20 == 0:
osem_var_net.eval()
val_loss = 0
for iv in range(num_training, (num_training + num_validation)):
x_fwd = osem_var_net(osem_database[iv:(iv + 1), ...],
emission_data_database[:, iv:(iv + 1), ...],
correction_database[:, iv:(iv + 1), ...],
contamination_database[:, iv:(iv + 1), ...],
adjoint_ones_database[:, iv:(iv + 1), ...])
val_loss += float(
loss_fn(x_fwd, emission_image_database[iv:(iv + 1), ...]))
val_loss /= num_validation
print(f'{(epoch+1):03}/{num_epochs:03} train_loss {float(loss):.2E} val_loss {val_loss:.2E} net_weight {float(osem_var_net.neural_net_weight):.2E}')
osem_var_net.train()
if val_loss < min_val_loss:
min_val_loss = val_loss
torch.save(osem_var_net.state_dict(),
output_dir / 'model_best_state.pt')
torch.save(loss_arr, output_dir / 'training_loss.pt')
torch.save(osem_var_net.state_dict(), output_dir / 'model_last_state.pt')