-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathWGAN_train.py
247 lines (180 loc) · 9.05 KB
/
WGAN_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
import argparse
import os
import numpy as np
import math
import sys
import toml
import torchvision.transforms as transforms
from torchvision.utils import save_image
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import torch.nn as nn
import torch.nn.functional as F
import torch.autograd as autograd
import torch
# self-building git
from model import Generator, Discriminator, Classifier, weights_init
from utils import compute_gradient_penalty
from tools.model import load_resnet18
from tools.utils import load_config, save_config
from tools.dataset import get_transform
# 缩写
cuda = True if torch.cuda.is_available() else False
FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor
LongTensor = torch.cuda.LongTensor if cuda else torch.LongTensor
# 训练一轮数据
def train_model(model, dataloader, optimizer, z_dim, is_train={'G':True,'D':True}):
# 过程中损失值总和
running_g_loss = 0.0
running_d_loss = 0.0
# 设置训练或验证模式
model['G'].train(is_train['G'])
model['D'].train(is_train['D'])
for i, (imgs, _) in enumerate(dataloader):
batch_size = imgs.shape[0]
# Configure input
real_imgs = Variable(imgs.type(FloatTensor)) # shape:(batch_size, channels, image_size, image_size)
# Sample noise as generator input.
z = Variable(FloatTensor(np.random.normal(0, 1, (batch_size, z_dim))))
# -----------------
# Train Generator
# -----------------
optimizer['G'].zero_grad()
optimizer['D'].zero_grad()
# Generate a batch of images
fake_imgs = model['G'](z)
# fake image discriminator out
fake_validity = model['D'](fake_imgs)
# Adversarial loss
g_loss = -torch.mean(fake_validity)
if is_train['G']:
g_loss.backward()
optimizer['G'].step()
running_g_loss += g_loss.item()
# ---------------------
# Train Discriminator
# ---------------------
optimizer['D'].zero_grad()
# Generate a batch of images
fake_imgs = model['G'](z)
# real image discriminator out
real_validity = model['D'](real_imgs)
# fake image discriminator out
fake_validity = model['D'](fake_imgs)
# Gradient penalty
gradient_penalty = compute_gradient_penalty(model['D'], real_imgs.data, fake_imgs.data, lambda_gp=10)
# Adversarial loss
d_loss = -torch.mean(real_validity) + torch.mean(fake_validity) + gradient_penalty
d_loss.backward()
optimizer['D'].step()
running_d_loss += d_loss.item()
if i % 10 == 0:
print('[batch:{0}/{1}] [generator loss:{2}] [discriminator loss:{3}]'\
.format(i, len(dataloader), g_loss.item()/batch_size, d_loss.item()/batch_size) )
# --------------------------
# Calculate the epoch loss
# --------------------------
epoch_g_loss = running_g_loss / len(dataloader.dataset)
epoch_d_loss = running_d_loss / len(dataloader.dataset)
return epoch_g_loss, epoch_d_loss
if __name__ == '__main__':
# 训练参数配置
parser = argparse.ArgumentParser()
parser.add_argument("-D", "--dataset_name", type=str, help="The name of used dataset")
parser.add_argument("-C", "--config_file", type=str, default='WGAN_config', help="config file name")
parser.add_argument("-R", "--resume", action="store_true", help="Resume the experiment from latest checkpoint.")
parser.add_argument("-E", "--n_epochs", type=int, default=500, help="number of epochs of training")
parser.add_argument("-B", "--batch_size", type=int, default=64, help="size of the batches")
parser.add_argument("-N", "--n_cpu", type=int, default=16, help="number of cpu threads to use during batch generation")
parser.add_argument("--img_size", type=int, default=256, help="size of each image dimension")
parser.add_argument("--channels", type=int, default=3, help="number of image channels")
parser.add_argument("--n_critic", type=int, default=5, help="number of training steps for discriminator per iter")
parser.add_argument("--clip_value", type=float, default=0.01, help="lower and upper clip value for disc. weights")
parser.add_argument("--sample_interval", type=int, default=200, help="interval between image samples")
opt = parser.parse_args()
print(opt)
# 图像配置
img_shape = (opt.channels, opt.img_size, opt.img_size)
# 配置与路径
config_file = opt.config_file
config = load_config(config_file)
# 数据集路径
dataset_name = opt.dataset_name
if not dataset_name:
dataset_name = config['data']['default_dataset_name']
original_image_dir = os.path.join(config['data']['original_image_root'], dataset_name)
config['checkpoints']['dataset_name'] = dataset_name
# Configure data loader
data_transforms = get_transform('non_transform')
dsets = datasets.ImageFolder(root=original_image_dir, transform=data_transforms)
dataloader = DataLoader(dsets, batch_size=opt.batch_size, shuffle=True, num_workers=opt.n_cpu)
z_dim = config['model']['args']['latent_dim'] # 隐向量维度
print('----------------------------------------------------------------------')
print('The original images will be readed at:', original_image_dir)
# 产出保存路径
checkpoints_dir = os.path.join(config['checkpoints']['checkpoints_root'], 'WGAN_' + dataset_name)
sample_image_dir = os.path.join(config['checkpoints']['sample_image_root'], 'WGAN_' + dataset_name)
print('\nThe checkpoints will be saved at: {}.'.format(checkpoints_dir))
print('The sample images will be saved at: {}.'.format(sample_image_dir))
print('----------------------------------------------------------------------')
os.makedirs(checkpoints_dir, exist_ok=True)
os.makedirs(sample_image_dir, exist_ok=True)
# fixed noise for sample
fixed_noise = Variable(FloatTensor(np.random.normal(0, 1, (100, z_dim))))
# Initialize weights
if opt.resume:
generator = torch.load(os.path.join(checkpoints_dir, 'NetG_last.pth'))
discriminator = torch.load(os.path.join(checkpoints_dir, 'NetD_last.pth'))
begin_epoch = config['checkpoints']['break_epoch'] + 1
results = np.load(os.path.join(checkpoints_dir, 'results.npy')).tolist()
else:
# Initialize generator and discriminator
generator = Generator(z_dim)
discriminator = Discriminator()
#discriminator = load_resnet18(category_num=1, pretrained=True)
generator.apply(weights_init)
discriminator.apply(weights_init)
begin_epoch = 1
results = []
if cuda:
generator.cuda()
discriminator.cuda()
# Optimizers(WGAN的优化器不能带动量:adam不可用)
optimizer_G = torch.optim.RMSprop(generator.parameters(), lr=2e-4)
optimizer_D = torch.optim.RMSprop(discriminator.parameters(), lr=2e-4)
# ----------
# Training
# ----------
batches_done = 0
end_epoch = begin_epoch + opt.n_epochs
for epoch in range(begin_epoch, end_epoch):
print('\nEpoch {}/{}'.format(epoch, end_epoch - 1), '\n' + '-'*10)
# 训练一个epoch
epoch_g_loss, epoch_d_loss = train_model({'G':generator,'D':discriminator}, dataloader, \
{'G':optimizer_G,'D':optimizer_D}, z_dim)
print('training end: [average generator loss: %f]/[average discriminator loss: %f]' % (epoch_g_loss, epoch_d_loss))
results.append([epoch, epoch_g_loss, epoch_d_loss])
# save the samples image
if epoch % 1 == 0:
# generate fixed image
fake_imgs = generator(fixed_noise)
sample_save_path = os.path.join(sample_image_dir, "fake_samples_ep{}.png".format(epoch))
save_image(fake_imgs.data[:30], sample_save_path, nrow=6, normalize=True)
print('samples save as:', sample_save_path)
# save the checkpoint model
if epoch % 5 == 0:
G_save_path = os.path.join(checkpoints_dir, 'NetG_ep%d.pth' % epoch)
D_save_path = os.path.join(checkpoints_dir, 'NetD_ep%d.pth' % epoch)
torch.save(generator.state_dict(), G_save_path)
torch.save(discriminator.state_dict(), D_save_path)
print('generator state dict out:', G_save_path)
print('discriminator state dict out:', D_save_path)
# checkpoint save
torch.save(generator, os.path.join(checkpoints_dir, 'NetG_last.pth'))
torch.save(discriminator, os.path.join(checkpoints_dir, 'NetD_last.pth'))
config['checkpoints']['break_epoch'] = epoch
save_config(config, config_file) # 警告:此处进行了对配置文件的操作
statistic_save_path = os.path.join(checkpoints_dir, 'results.npy')
np.save(statistic_save_path, results)
print('final statistics restore:', statistic_save_path)