-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathparse.py
155 lines (121 loc) · 4.84 KB
/
parse.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
from scipy.io import loadmat
import numpy as np
import os
from skimage.color import gray2rgb
from skimage.io import imsave
import skimage.morphology as morph
from sys import argv, exit
if len(argv) < 2:
print('Usage: python parse.py <data_dir> [-v]')
exit(0)
SHOW_PLOTS = False
if len(argv) == 3:
if argv[2] != '-v':
print('Unknown flag', argv[2])
exit(0)
SHOW_PLOTS = True
img_index = 0
import matplotlib.pyplot as plt
data_dir = os.path.normpath(argv[1]) + '/'
seg_filename_mask = data_dir + 'manual_seg/manual_seg_32points_pat{}.mat'
img_filename_mask = data_dir + 'mrimages/sol_yxzt_pat{}.mat'
input_dir = data_dir + 'input/'
if not os.path.exists(input_dir):
os.mkdir(input_dir)
output_dir = data_dir + 'output/'
if not os.path.exists(output_dir):
os.mkdir(output_dir)
bbox_dir = data_dir + 'bbox/'
if not os.path.exists(bbox_dir):
os.mkdir(bbox_dir)
batch_filename = 'batch_{}.npy'
def save_batch(batch):
'''
print(i.shape)
print(o.shape)
print(i[0])
print(o[0])
'''
np.save((input_dir + batch_filename).format(batch_count), batch[0])
np.save((output_dir + batch_filename).format(batch_count), batch[1])
np.save((bbox_dir + batch_filename).format(batch_count), batch[2])
def fill_poly(poly_y, poly_x, shape):
bbox = np.zeros((4), dtype=np.int32)
bbox[0] = np.min(poly_y)
bbox[1] = np.min(poly_x)
bbox[2] = np.max(poly_y)
bbox[3] = np.max(poly_x)
mask = np.zeros(shape, dtype = np.bool_)
mask[poly_y.astype(np.int), poly_x.astype(np.int)] = True
mask = morph.convex_hull_image(mask).astype(np.int8)
return mask, bbox
max_bbox = [0, 0]
count = 0
batch_count = 0
i = 1
while True:
cur_batch = [None, None, None]
seg_filename = seg_filename_mask.format(i)
img_filename = img_filename_mask.format(i)
i += 1
print(seg_filename)
if not os.path.isfile(seg_filename):
break
slices = loadmat(img_filename)['sol_yxzt']
segmentations = loadmat(seg_filename)['manual_seg_32points']
for z in range(slices.shape[2]):
for t in range(slices.shape[3]):
slice = slices[:, :, z, t]
segmentation = segmentations[z, t]
if segmentation.shape[0] > 1:
segm = np.zeros((2, 33, 2))
segm[0] = segmentation[:33, :]
segm[0, 32] = segm[0, 0]
segm[1] = segmentation[32:, :]
segm[1, 0] = segm[1, -1]
mask1, _ = fill_poly(segm[0, :, 1], segm[0, :, 0], slice.shape[:2])
mask2, bbox = fill_poly(segm[1, :, 1], segm[1, :, 0], slice.shape[:2])
mask = mask1 + mask2
count += 1
max_bbox = [max(max_bbox[0], bbox[2] - bbox[0]),
max(max_bbox[1], bbox[3] - bbox[1])]
if cur_batch[0] is None:
cur_batch[0] = np.array([slice], dtype=np.float16)
cur_batch[1] = np.array([mask], dtype=np.int8)
cur_batch[2] = np.array([bbox], dtype=np.int32)
else:
cur_batch[0] = np.append(cur_batch[0], [slice], axis=0)
cur_batch[1] = np.append(cur_batch[1], [mask], axis=0)
cur_batch[2] = np.append(cur_batch[2], [bbox], axis=0)
'''
if count % batch_size == 0:
save_batch(cur_batch[1], cur_batch[0])
cur_batch = [None, None]
batch_count += 1
'''
plt.imsave('{}images/img_{}.png'.format(data_dir, img_index), slice, cmap='gray')
np.save('{}mask1/img_{}'.format(data_dir, img_index), mask1)
np.save('{}mask2/img_{}'.format(data_dir, img_index), mask2)
#plt.imsave('{}mask1/img_{}.png'.format(data_dir, img_index), mask1, cmap='gray')
#plt.imsave('{}mask2/img_{}.png'.format(data_dir, img_index), mask2, cmap='gray')
img_index += 1
if SHOW_PLOTS:
plt.subplot(121)
plt.plot(segm[0, :, 0], segm[0, :, 1])
plt.plot(segm[1, :, 0], segm[1, :, 1])
plt.imshow(slice, cmap='gray')
plt.subplot(122)
plt.imshow(mask, cmap='gray', interpolation='None')
mngr = plt.get_current_fig_manager()
# to put it into the upper left corner for example:
mngr.window.setGeometry(100,100, 1000, 800)
plt.show()
save_batch(cur_batch)
batch_count += 1
print('count:', count)
print('max_bbox:', max_bbox)
'''
if cur_batch[0] is not None:
np.save(batch_filename.format(batch_count), cur_batch)
cur_batch = None
'''