This repository has been archived by the owner on Oct 20, 2022. It is now read-only.
forked from GoogleCloudPlatform/DataflowTemplates
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSpannerToText.java
128 lines (116 loc) · 5.45 KB
/
SpannerToText.java
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
/*
* Copyright (C) 2018 Google Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.cloud.teleport.templates;
import com.google.cloud.teleport.templates.common.JavascriptTextTransformer.JavascriptTextTransformerOptions;
import com.google.cloud.teleport.templates.common.JavascriptTextTransformer.TransformTextViaJavascript;
import com.google.cloud.teleport.templates.common.SpannerConverters;
import com.google.cloud.teleport.templates.common.SpannerConverters.SpannerReadOptions;
import com.google.cloud.teleport.templates.common.TextConverters.FilesystemWriteOptions;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.FileSystems;
import org.apache.beam.sdk.io.TextIO;
import org.apache.beam.sdk.io.gcp.spanner.ReadOperation;
import org.apache.beam.sdk.io.gcp.spanner.SpannerConfig;
import org.apache.beam.sdk.io.gcp.spanner.SpannerIO;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.transforms.MapElements;
import org.apache.beam.sdk.transforms.PTransform;
import org.apache.beam.sdk.values.PBegin;
import org.apache.beam.sdk.values.PCollection;
import org.apache.beam.sdk.values.TypeDescriptors;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* Dataflow template which copies a Spanner table to a Text sink. It exports a Spanner table using
* <a href="https://cloud.google.com/spanner/docs/reads#read_data_in_parallel">Batch API</a>,
* which creates multiple workers in parallel for better performance. The result is written
* to a CSV file in Google Cloud Storage. The table schema file is saved in json format along with
* the exported table.
*
* <p>Schema file sample: { "id":"INT64", "name":"STRING(MAX)" }
*
* <p>A sample run:
*
* <pre>
* mvn compile exec:java \
* -Dexec.mainClass=com.google.cloud.teleport.templates.SpannerToText \
* -Dexec.args="--runner=DataflowRunner \
* --spannerProjectId=projectId
* --gcpTempLocation=gs://gsTmpLocation \
* --spannerInstanceId=instanceId \
* --spannerDatabaseId=databaseId \
* --spannerTable=table_name \
* --textWritePrefix=gcsOutputPath"
* </pre>
*/
public class SpannerToText {
private static final Logger LOG = LoggerFactory.getLogger(SpannerToText.class);
private interface SpannerToTextOptions
extends PipelineOptions,
SpannerReadOptions,
JavascriptTextTransformerOptions,
FilesystemWriteOptions {}
/**
* Runs a pipeline which reads in Records from Spanner, passes in the CSV records to a Javascript
* UDF, and writes the CSV to TextIO sink.
*
* @param args arguments to the pipeline
*/
public static void main(String[] args) {
LOG.info("Starting pipeline setup");
PipelineOptionsFactory.register(SpannerToTextOptions.class);
SpannerToTextOptions options =
PipelineOptionsFactory.fromArgs(args).withValidation().as(SpannerToTextOptions.class);
FileSystems.setDefaultPipelineOptions(options);
Pipeline pipeline = Pipeline.create(options);
SpannerConfig spannerConfig =
SpannerConfig.create()
.withProjectId(options.getSpannerProjectId())
.withInstanceId(options.getSpannerInstanceId())
.withDatabaseId(options.getSpannerDatabaseId());
PTransform<PBegin, PCollection<ReadOperation>> spannerExport =
SpannerConverters.ExportTransformFactory.create(
options.getSpannerTable(), spannerConfig, options.getTextWritePrefix());
PCollection<String> csv =
pipeline
.apply("Create export", spannerExport)
// We need to use SpannerIO.readAll() instead of SpannerIO.read()
// because ValueProvider parameters such as table name required for SpannerIO.read()
// can be read only inside DoFn but SpannerIO.read() is of type
// PTransform<PBegin, Struct>, which prevents prepending it with DoFn that reads these
// parameters at the pipeline execution time.
.apply("Read all records", SpannerIO.readAll().withSpannerConfig(spannerConfig))
.apply(
"Struct To Csv",
MapElements.into(TypeDescriptors.strings())
.via(struct -> (new SpannerConverters.StructCsvPrinter()).print(struct)));
if (options.getJavascriptTextTransformGcsPath().isAccessible()) {
// The UDF function takes a CSV row as an input and produces a transformed CSV row
csv =
csv.apply(
"JavascriptUDF",
TransformTextViaJavascript.newBuilder()
.setFileSystemPath(options.getJavascriptTextTransformGcsPath())
.setFunctionName(options.getJavascriptTextTransformFunctionName())
.build());
}
csv.apply(
"Write to storage", TextIO.write().to(options.getTextWritePrefix()).withSuffix(".csv"));
pipeline.run();
LOG.info("Completed pipeline setup");
}
}