-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsvm.py
312 lines (289 loc) · 11.9 KB
/
svm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""
ORIE 4741 - Final Project
SVM
Grace Mitchell
12/3/2017
Purpose of script is to complete 4 SVM models
"""
from sklearn import svm
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# import data
# courthouse
court_tr=pd.DataFrame.from_csv('courtnewf_train.csv')
court_tr=court_tr.values
court_te=pd.DataFrame.from_csv('courtnewf_test.csv')
court_te=court_te.values
court_va=pd.DataFrame.from_csv('courtnewf_valid.csv')
court_va=court_va.values
# office
office_tr=pd.DataFrame.from_csv('officenewf_train.csv')
office_tr=office_tr.values
office_te=pd.DataFrame.from_csv('officenewf_test.csv')
office_te=office_te.values
office_va=pd.DataFrame.from_csv('officenewf_valid.csv')
office_va=office_va.values
# school 1
school1_tr=pd.DataFrame.from_csv('school1newf_train.csv')
school1_tr=school1_tr.values
school1_te=pd.DataFrame.from_csv('school1newf_test.csv')
school1_te=school1_te.values
school1_va=pd.DataFrame.from_csv('school1newf_valid.csv')
school1_va=school1_va.values
# school 2
school2_tr=pd.DataFrame.from_csv('school2newf_train.csv')
school2_tr=school2_tr.values
school2_te=pd.DataFrame.from_csv('school2newf_test.csv')
school2_te=school2_te.values
school2_va=pd.DataFrame.from_csv('school2newf_valid.csv')
school2_va=school2_va.values
# courthouse
X_court=court_tr[:,:17]
y_court=court_tr[:,18]
court_valid=court_va[:,:17]
court_test=court_te[:,:17]
# Create SVM classification object
court_model = svm.SVR(kernel='linear', C=1, gamma=1)
court_model.fit(X_court, y_court)
court_model.score(X_court, y_court)
#Predict Output
court_valid_pred= court_model.predict(court_valid)
court_test_pred= court_model.predict(court_test)
# office
X_office=office_tr[:,:17]
y_office=office_tr[:,18]
office_valid=office_va[:,:17]
office_test=office_te[:,:17]
# Create SVM classification object
office_model = svm.SVR(kernel='linear', C=1, gamma=1)
office_model.fit(X_office, y_office)
office_model.score(X_office, y_office)
#Predict Output
office_valid_pred= office_model.predict(office_valid)
office_test_pred= office_model.predict(office_test)
# school 1
X_school1=school1_tr[:,:17]
y_school1=school1_tr[:,18]
school1_valid=school1_va[:,:17]
school1_test=school1_te[:,:17]
# Create SVM classification object
school1_model = svm.SVR(kernel='linear', C=1, gamma=1)
school1_model.fit(X_school1, y_school1)
school1_model.score(X_school1, y_school1)
#Predict Output
school1_valid_pred= school1_model.predict(school1_valid)
school1_test_pred= school1_model.predict(school1_test)
# school 2
X_school2=school2_tr[:,:17]
y_school2=school2_tr[:,18]
school2_valid=school2_va[:,:17]
school2_test=school2_te[:,:17]
# Create SVM classification object
school2_model = svm.SVR(kernel='linear', C=1, gamma=1)
school2_model.fit(X_school2, y_school2)
school2_model.score(X_school2, y_school2)
#Predict Output
school2_valid_pred= school2_model.predict(school2_valid)
school2_test_pred= school2_model.predict(school2_test)
# accuracy
# courthouse
court_valid_truth= court_va[:,18]
court_test_truth= court_te[:,18]
court_count_va=0
court_va_pdiff=np.zeros(len(court_valid_truth))
court_va_diff=np.zeros(len(court_valid_truth))
for i in range(len(court_valid_truth)):
court_va_pdiff[i]=abs(court_valid_truth[i] - court_valid_pred[i])/court_valid_truth[i]
court_va_diff[i]=court_valid_truth[i] - court_valid_pred[i]
for i in range(len(court_valid_truth)):
if court_va_pdiff[i] <= 0.1:
court_count_va+=1
court_count_te=0
court_te_pdiff=np.zeros(len(court_test_truth))
court_te_diff=np.zeros(len(court_test_truth))
for i in range(len(court_test_truth)):
court_te_pdiff[i]=abs(court_test_truth[i] - court_test_pred[i])/court_test_truth[i]
court_te_diff[i]=court_test_truth[i] - court_test_pred[i]
for i in range(len(court_test_truth)):
if court_te_pdiff[i] <= 0.1:
court_count_te+=1
court_valid_accuracy=court_count_va/len(court_valid_truth)
court_test_accuracy=court_count_te/len(court_test_truth)
# MSE/RMSE
court_va_mse=np.mean(court_va_diff**2)
court_te_mse=np.mean(court_te_diff**2)
court_va_rmse=np.sqrt(court_va_mse)
court_te_rmse=np.sqrt(court_te_mse)
print(court_valid_accuracy)
print(court_test_accuracy)
# office
office_valid_truth= office_va[:,18]
office_test_truth= office_te[:,18]
office_count_va=0
office_va_pdiff=np.zeros(len(office_valid_truth))
office_va_diff=np.zeros(len(office_valid_truth))
for i in range(len(office_valid_truth)):
office_va_pdiff[i]=abs(office_valid_truth[i] - office_valid_pred[i])/office_valid_truth[i]
office_va_diff[i]=office_valid_truth[i] - office_valid_pred[i]
for i in range(len(office_valid_truth)):
if office_va_pdiff[i] <= 0.1:
office_count_va+=1
office_count_te=0
office_te_pdiff=np.zeros(len(office_test_truth))
office_te_diff=np.zeros(len(office_test_truth))
for i in range(len(office_test_truth)):
office_te_pdiff[i]=abs(office_test_truth[i] - office_test_pred[i])/office_test_truth[i]
office_te_diff[i]=office_test_truth[i] - office_test_pred[i]
for i in range(len(office_test_truth)):
if office_te_pdiff[i] <= 0.1:
office_count_te+=1
office_valid_accuracy=office_count_va/len(office_valid_truth)
office_test_accuracy=office_count_te/len(office_test_truth)
# MSE/RMSE
office_va_mse=np.mean(office_va_diff**2)
office_te_mse=np.mean(office_te_diff**2)
office_va_rmse=np.sqrt(office_va_mse)
office_te_rmse=np.sqrt(office_te_mse)
print(office_valid_accuracy)
print(office_test_accuracy)
# school 1
school1_valid_truth= school1_va[:,18]
school1_test_truth= school1_te[:,18]
school1_count_va=0
school1_va_pdiff=np.zeros(len(school1_valid_truth))
school1_va_diff=np.zeros(len(school1_valid_truth))
for i in range(len(school1_valid_truth)):
school1_va_pdiff[i]=abs(school1_valid_truth[i] - school1_valid_pred[i])/school1_valid_truth[i]
school1_va_diff[i]=school1_valid_truth[i] - school1_valid_pred[i]
for i in range(len(school1_valid_truth)):
if school1_va_pdiff[i] <= 0.1:
school1_count_va+=1
school1_count_te=0
school1_te_pdiff=np.zeros(len(school1_test_truth))
school1_te_diff=np.zeros(len(school1_test_truth))
for i in range(len(school1_test_truth)):
school1_te_pdiff[i]=abs(school1_test_truth[i] - school1_test_pred[i])/school1_test_truth[i]
school1_te_diff[i]=school1_test_truth[i] - school1_test_pred[i]
for i in range(len(school1_test_truth)):
if school1_te_pdiff[i] <= 0.1:
school1_count_te+=1
school1_valid_accuracy=school1_count_va/len(school1_valid_truth)
school1_test_accuracy=school1_count_te/len(school1_test_truth)
# MSE/RMSE
school1_va_mse=np.mean(school1_va_diff**2)
school1_te_mse=np.mean(school1_te_diff**2)
school1_va_rmse=np.sqrt(school1_va_mse)
school1_te_rmse=np.sqrt(school1_te_mse)
print(school1_valid_accuracy)
print(school1_test_accuracy)
# school 2
school2_valid_truth= school2_va[:,18]
school2_test_truth= school2_te[:,18]
school2_count_va=0
school2_va_pdiff=np.zeros(len(school2_valid_truth))
school2_va_diff=np.zeros(len(school2_valid_truth))
for i in range(len(school2_valid_truth)):
school2_va_pdiff[i]=abs(school2_valid_truth[i] - school2_valid_pred[i])/school2_valid_truth[i]
school2_va_diff[i]=school2_valid_truth[i] - school2_valid_pred[i]
for i in range(len(school2_valid_truth)):
if school2_va_pdiff[i] <= 0.1:
school2_count_va+=1
school2_count_te=0
school2_te_pdiff=np.zeros(len(school2_test_truth))
school2_te_diff=np.zeros(len(school2_test_truth))
for i in range(len(school2_test_truth)):
school2_te_pdiff[i]=abs(school2_test_truth[i] - school2_test_pred[i])/school2_test_truth[i]
school2_te_diff[i]=school2_test_truth[i] - school2_test_pred[i]
for i in range(len(school2_test_truth)):
if school2_te_pdiff[i] <= 0.1:
school2_count_te+=1
school2_valid_accuracy=school2_count_va/len(school2_valid_truth)
school2_test_accuracy=school2_count_te/len(school2_test_truth)
# MSE/RMSE
school2_va_mse=np.mean(school2_va_diff**2)
school2_te_mse=np.mean(school2_te_diff**2)
school2_va_rmse=np.sqrt(school2_va_mse)
school2_te_rmse=np.sqrt(school2_te_mse)
print(school2_valid_accuracy)
print(school2_test_accuracy)
# concatenate
valid_a=[court_valid_accuracy,office_valid_accuracy,school1_valid_accuracy,school2_valid_accuracy]
test_a=[court_test_accuracy,office_test_accuracy,school1_test_accuracy,school2_test_accuracy]
valid_mse=np.mean([court_va_mse,office_va_mse,school1_va_mse,school2_va_mse])
test_mse=np.mean([court_te_mse,office_te_mse,school1_te_mse,school2_te_mse])
valid_rmse=np.mean([court_va_rmse,office_va_rmse,school1_va_rmse,school2_va_rmse])
test_rmse=np.mean([court_te_rmse,office_te_rmse,school1_te_rmse,school2_te_rmse])
print(valid_mse)
print(test_mse)
print(valid_rmse)
print(test_rmse)
# plots
# can change kernel, C, gamma (poly, rbf, sigmoid)
# kernel = linear, poly, sigmoid
# C range = 10^-5, 10, 10^5
# linear kernel function
C_range=[0.01,1,100]
court_valid_accuracy_lin=[0.1148105625717566*100,0.799081515499426*100,0.8019517795637199*100]
office_valid_accuracy_lin=[0.33696900114810563*100,0.9202066590126292*100,0.9225028702640643*100]
school1_valid_accuracy_lin=[0.2766934557979334*100,0.8438576349024111*100,0.8438576349024111*100]
school2_valid_accuracy_lin=[0.1452353616532721*100,0.7910447761194029*100,0.7893226176808267*100]
court_test_accuracy_lin=[0.14129810453762207*100,0.7880528431935669*100,0.7886272257323378*100]
office_test_accuracy_lin= [0.32222860425043076*100,0.9172889144170018*100,0.9172889144170018*100]
school1_test_accuracy_lin=[0.28948879954049395*100,0.8460654796094199*100,0.8460654796094199*100]
school2_test_accuracy_lin=[0.13038483630097644*100,0.7989661114302126*100,0.7978173463526709*100]
# plots
f, ax = plt.subplots(2, sharey=True)
# validation accuracy
ax[0].plot(C_range,court_valid_accuracy_lin)
ax[0].plot(C_range,office_valid_accuracy_lin)
ax[0].plot(C_range,school1_valid_accuracy_lin)
ax[0].plot(C_range,school2_valid_accuracy_lin)
ax[0].set_title('Linear Kernel - Validation Accuracy')
ax[0].grid(True)
ax[0].legend(['Courthouse', 'Office Building', 'School 1', 'School 2'], loc='best')
ax[0].set_ylabel('Accuracy (%)')
ax[0].set_xlabel('C')
# test accuracy
ax[1].plot(C_range,court_test_accuracy_lin)
ax[1].plot(C_range,office_test_accuracy_lin)
ax[1].plot(C_range,school1_test_accuracy_lin)
ax[1].plot(C_range,school2_test_accuracy_lin)
ax[1].set_title('Linear Kernel - Test Accuracy')
ax[1].grid(True)
plt.legend(['Courthouse', 'Office Building', 'School 1', 'School 2'], loc='best')
plt.ylabel('Accuracy (%)')
plt.xlabel('C')
# poly kernel function
C_range_poly=[0.0001, 0.001, 0.01]
court_valid_accuracy_poly=[0.12399540757749714*100,0.2835820895522388*100,0.6423650975889782*100]
court_test_accuracy_poly=[0.1556576680068926*100,0.30786904078116023*100,0.6611143021252154*100]
office_valid_accuracy_poly=[0.3668197474167623*100,0.7416762342135477*100,0.936280137772675*100]
office_test_accuracy_poly= [0.3543940264215968*100,0.7501435956346927*100,0.9345203905801264*100]
school1_valid_accuracy_poly=[0.2772675086107922*100,0.6142365097588978*100, 0.8151549942594719*100]
school1_test_accuracy_poly=[0.27627800114876505*100,0.6088454910970706*100,0.8299827685238369*100]
school2_valid_accuracy_poly=[0.15729047072330654*100,0.42709529276693453*100,0.7319173363949484*100]
school2_test_accuracy_poly=[0.15795519816197587*100,0.4152785755313039*100,0.7501435956346927*100]
# plots
f, a = plt.subplots(2, sharey=True)
# validation accuracy
a[0].plot(C_range_poly,court_valid_accuracy_poly)
a[0].plot(C_range_poly,office_valid_accuracy_poly)
a[0].plot(C_range_poly,school1_valid_accuracy_poly)
a[0].plot(C_range_poly,school2_valid_accuracy_poly)
a[0].set_title('Polynomial Kernel - Validation Accuracy')
a[0].grid(True)
a[0].legend(['Courthouse', 'Office Building', 'School 1', 'School 2'], loc='best')
a[0].set_ylabel('Accuracy (%)')
a[0].set_xlabel('C')
# test accuracy
a[1].plot(C_range_poly,court_test_accuracy_poly)
a[1].plot(C_range_poly,office_test_accuracy_poly)
a[1].plot(C_range_poly,school1_test_accuracy_poly)
a[1].plot(C_range_poly,school2_test_accuracy_poly)
a[1].set_title('Polynomial Kernel - Test Accuracy')
a[1].grid(True)
plt.legend(['Courthouse', 'Office Building', 'School 1', 'School 2'], loc='best')
plt.ylabel('Accuracy (%)')
plt.xlabel('C')
#plt.show()