-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathhybrid.py
189 lines (160 loc) · 4.25 KB
/
hybrid.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
#conributors:
#Palak Singhal 16co129
#Govind Jeevan
import random
import hashlib
import time
import matplotlib.pyplot as plt
import ContinuedFractions, Arithmetic, RSAvulnerableKeyGenerator
def hack_RSA(e,n):
'''
Finds d knowing (e,n)
applying the Wiener continued fraction attack
'''
frac = ContinuedFractions.rational_to_contfrac(e, n)
convergents = ContinuedFractions.convergents_from_contfrac(frac)
for (k,d) in convergents:
#check if d is actually the key
if k!=0 and (e*d-1)%k == 0:
phi = (e*d-1)//k
s = n - phi + 1
# check if the equation x^2 - s*x + n = 0
# has integer roots
discr = s*s - 4*n
if(discr>=0):
t = Arithmetic.is_perfect_square(discr)
if t!=-1 and (s+t)%2==0:
print("Hacked!")
return d
# function to find extended gcd
def egcd(a, b):
if a == 0:
return (b, 0, 1)
else:
g, y, x = egcd(b % a, a)
return (g, x - (b // a) * y, y)
# function to find modular inverse
def inverse(a,m):
g,x,y = egcd(a,m)
if g != 1:
return None
else:
return x%m
# function to generate prime numbers
def generateprime(a,b):
count=0
while count<1:
p= random.randint(a,b)
if is_probable_prime(p):
count+=1
while count<2:
q= random.randint(a,b)
if is_probable_prime(q):
if q!=p:
count+=1
return p,q
_mrpt_num_trials = 5 # number of bases to test
#To check if the number is prime
def is_probable_prime(n):
assert n >= 2
# special case 2
if n == 2:
return True
# ensure n is odd
if n % 2 == 0:
return False
# write n-1 as 2**s * d
# repeatedly try to divide n-1 by 2
s = 0
d = n-1
while True:
quotient, remainder = divmod(d, 2)
if remainder == 1:
break
s += 1
d = quotient
assert(2**s * d == n-1)
# test the base a to see whether it is a witness for the compositeness of n
def try_composite(a):
if pow(a, d, n) == 1:
return False
for i in range(s):
if pow(a, 2**i * d, n) == n-1:
return False
return True # n is definitely composite
for i in range(_mrpt_num_trials):
a = random.randrange(2, n)
if try_composite(a):
return False
return True # no base tested showed n as composite
# To calculate gcd of two numbers
def gcd(a,b):
while b!=0:
a,b = b, a%b
return a
# To generate keys e and d using prime numbers p and q
def generatekey(p,q):
n= p*q
phi = (p-1)*(q-1)
g= 10
while(g!=1):
e= random.randrange(1,phi)
g= gcd(e, phi)
d= inverse(e, phi)
return (e, d)
# Calculate xor of plaintext with key as well as ciphertext with key.
def xor(s1, s2):
return "".join([chr(ord(c1) ^ ord(c2)) for (c1,c2) in zip(s1,s2)])
if __name__ == '__main__':
lis = []
n=1
x=[]
while n<11:
start_time = time.time()
p,q = generateprime(2**n, 2**(n+1))
print(p,q)
public, private = generatekey(p,q)
A= public
B= private
print("public key:", public, "private key:", private)
g= random.randint(500,5000)
r,m = generateprime(2**n,2**(n+1))
print("shared prime ",r, "shared base ",g)
X= (g**A)%r
Y= (g**B)%r
print("Alice sends", X, "Bob sends", Y)
K1= pow(Y,A,r)
K2= pow(X,B,r)
Key1=hashlib.sha256(str(K1).encode('utf-8')).hexdigest()
Key2=hashlib.sha256(str(K2).encode('utf-8')).hexdigest()
print("Key I: ", Key1)
print("Key II: ", Key2)
'''message = input("enter message to be encrypted")'''
message= 'palak'
ciphertext = xor(message, Key1)
print("Cipher Text " , ciphertext)
messagetext = xor(ciphertext, Key2)
print("Message Text " ,messagetext)
print("--- %s seconds ---" % (time.time() - start_time))
print ("n: ", n)
x.append(n)
lis.append(time.time()- start_time)
times = 5
while(times>0):
e = public
d = private
print ("d = ", d)
hacked_d = hack_RSA(e, p*q)
if d == hacked_d:
print ("Hack WORKED!")
else:
print ("Hack FAILED")
print ("d = ", d, ", hacked_d = ", hacked_d)
print ("-------------------------")
times -= 1
n= n+1
plt.plot(x, lis)
plt.xlabel('Number of bits ')
plt.ylabel('Time taken')
plt.title('Bits in prime number vs time taken')
plt.show()