-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdiffie_hellman.py
79 lines (71 loc) · 1.97 KB
/
diffie_hellman.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import random
import time
import matplotlib.pyplot as plt
def generateprime(a,b):
count=0
while count<1:
p= random.randint(a,b)
if is_probable_prime(p):
count+=1
return p
_mrpt_num_trials = 5 # number of bases to test
def is_probable_prime(n):
assert n >= 2
# special case 2
if n == 2:
return True
# ensure n is odd
if n % 2 == 0:
return False
# write n-1 as 2**s * d
# repeatedly try to divide n-1 by 2
s = 0
d = n-1
while True:
quotient, remainder = divmod(d, 2)
if remainder == 1:
break
s += 1
d = quotient
assert(2**s * d == n-1)
# test the base a to see whether it is a witness for the compositeness of n
def try_composite(a):
if pow(a, d, n) == 1:
return False
for i in range(s):
if pow(a, 2**i * d, n) == n-1:
return False
return True # n is definitely composite
for i in range(_mrpt_num_trials):
a = random.randrange(2, n)
if try_composite(a):
return False
return True # no base tested showed n as composite
if __name__ == '__main__':
lis = []
x= []
n1=1
while n1<15:
start_time = time.time()
p= generateprime(2**n1,2**(n1+1))
b= random.randint(500,5000)
A= random.randint(500,5000)
B= random.randint(500,5000)
print("shared prime ",p, "shared base ",b)
X= (b**A)%p
Y= (b**B)%p
print("Alice sends", X, "Bob sends", Y)
m= (Y**A)%p
n= (X**B)%p
print("alice shared secret: ", m, " Bob shared secret: ", n)
print("--- %s seconds ---" % (time.time() - start_time))
print ("n: ", n1)
x.append(n1)
lis.append(time.time()- start_time)
n1= n1+1
plt.plot(x, lis)
plt.xlabel('Number of bits ')
plt.ylabel('Time taken')
plt.title('Bits in prime number vs time taken')
plt.show()
plt.savefig('dh-graph')