-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathsat_base.h
720 lines (624 loc) · 27.4 KB
/
sat_base.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Basic types and classes used by the sat solver.
#ifndef OR_TOOLS_SAT_SAT_BASE_H_
#define OR_TOOLS_SAT_SAT_BASE_H_
#include <algorithm>
#include <cstdint>
#include <deque>
#include <functional>
#include <ostream>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/log/check.h"
#include "absl/strings/str_format.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/base/strong_vector.h"
#include "ortools/util/bitset.h"
#include "ortools/util/strong_integers.h"
namespace operations_research {
namespace sat {
// Index of a variable (>= 0).
DEFINE_STRONG_INDEX_TYPE(BooleanVariable);
const BooleanVariable kNoBooleanVariable(-1);
// Index of a literal (>= 0), see Literal below.
DEFINE_STRONG_INDEX_TYPE(LiteralIndex);
const LiteralIndex kNoLiteralIndex(-1);
// Special values used in some API to indicate a literal that is always true
// or always false.
const LiteralIndex kTrueLiteralIndex(-2);
const LiteralIndex kFalseLiteralIndex(-3);
// A literal is used to represent a variable or its negation. If it represents
// the variable it is said to be positive. If it represent its negation, it is
// said to be negative. We support two representations as an integer.
//
// The "signed" encoding of a literal is convenient for input/output and is used
// in the cnf file format. For a 0-based variable index x, (x + 1) represent the
// variable x and -(x + 1) represent its negation. The signed value 0 is an
// undefined literal and this class can never contain it.
//
// The "index" encoding of a literal is convenient as an index to an array
// and is the one used internally for efficiency. It is always positive or zero,
// and for a 0-based variable index x, (x << 1) encode the variable x and the
// same number XOR 1 encode its negation.
class Literal {
public:
explicit Literal(int signed_value)
: index_(signed_value > 0 ? ((signed_value - 1) << 1)
: ((-signed_value - 1) << 1) ^ 1) {
CHECK_NE(signed_value, 0);
}
Literal() = default;
explicit Literal(LiteralIndex index) : index_(index.value()) {}
Literal(BooleanVariable variable, bool is_positive)
: index_(is_positive ? (variable.value() << 1)
: (variable.value() << 1) ^ 1) {}
// We want a literal to be implicitly converted to a LiteralIndex().
// Before this, we used to have many literal.Index() that didn't add anything.
//
// TODO(user): LiteralIndex might not even be needed, but because of the
// signed value business, it is still safer with it.
operator LiteralIndex() const { return Index(); } // NOLINT
BooleanVariable Variable() const { return BooleanVariable(index_ >> 1); }
bool IsPositive() const { return !(index_ & 1); }
bool IsNegative() const { return (index_ & 1); }
LiteralIndex Index() const { return LiteralIndex(index_); }
LiteralIndex NegatedIndex() const { return LiteralIndex(index_ ^ 1); }
int SignedValue() const {
return (index_ & 1) ? -((index_ >> 1) + 1) : ((index_ >> 1) + 1);
}
Literal Negated() const { return Literal(NegatedIndex()); }
std::string DebugString() const {
return absl::StrFormat("%+d", SignedValue());
}
bool operator==(Literal other) const { return index_ == other.index_; }
bool operator!=(Literal other) const { return index_ != other.index_; }
bool operator<(const Literal& other) const { return index_ < other.index_; }
template <typename H>
friend H AbslHashValue(H h, Literal literal) {
return H::combine(std::move(h), literal.index_);
}
private:
int index_;
};
inline std::ostream& operator<<(std::ostream& os, Literal literal) {
os << literal.DebugString();
return os;
}
template <typename Sink, typename... T>
void AbslStringify(Sink& sink, Literal arg) {
absl::Format(&sink, "%s", arg.DebugString());
}
inline std::ostream& operator<<(std::ostream& os,
absl::Span<const Literal> literals) {
os << "[";
bool first = true;
for (const Literal literal : literals) {
if (first) {
first = false;
} else {
os << ",";
}
os << literal.DebugString();
}
os << "]";
return os;
}
// Only used for testing to use the classical SAT notation for a literal. This
// allows to write Literals({+1, -4, +3}) for the clause with BooleanVariable 0
// and 2 appearing positively and 3 negatively.
inline std::vector<Literal> Literals(absl::Span<const int> input) {
std::vector<Literal> result(input.size());
for (int i = 0; i < result.size(); ++i) {
result[i] = Literal(input[i]);
}
return result;
}
// Holds the current variable assignment of the solver.
// Each variable can be unassigned or be assigned to true or false.
class VariablesAssignment {
public:
VariablesAssignment() = default;
explicit VariablesAssignment(int num_variables) { Resize(num_variables); }
// This type is neither copyable nor movable.
VariablesAssignment(const VariablesAssignment&) = delete;
VariablesAssignment& operator=(const VariablesAssignment&) = delete;
void Resize(int num_variables) {
assignment_.Resize(LiteralIndex(num_variables << 1));
}
// Makes the given literal true by assigning its underlying variable to either
// true or false depending on the literal sign. This can only be called on an
// unassigned variable.
void AssignFromTrueLiteral(Literal literal) {
DCHECK(!VariableIsAssigned(literal.Variable()));
assignment_.Set(literal.Index());
}
// Unassign the variable corresponding to the given literal.
// This can only be called on an assigned variable.
void UnassignLiteral(Literal literal) {
DCHECK(VariableIsAssigned(literal.Variable()));
assignment_.ClearTwoBits(literal.Index());
}
// Literal getters. Note that both can be false, in which case the
// corresponding variable is not assigned.
bool LiteralIsFalse(Literal literal) const {
return assignment_.IsSet(literal.NegatedIndex());
}
bool LiteralIsTrue(Literal literal) const {
return assignment_.IsSet(literal.Index());
}
bool LiteralIsAssigned(Literal literal) const {
return assignment_.AreOneOfTwoBitsSet(literal.Index());
}
// Returns true iff the given variable is assigned.
bool VariableIsAssigned(BooleanVariable var) const {
return assignment_.AreOneOfTwoBitsSet(LiteralIndex(var.value() << 1));
}
// Returns the literal of the given variable that is assigned to true.
// That is, depending on the variable, it can be the positive literal or the
// negative one. Only call this on an assigned variable.
Literal GetTrueLiteralForAssignedVariable(BooleanVariable var) const {
DCHECK(VariableIsAssigned(var));
return Literal(var, assignment_.IsSet(LiteralIndex(var.value() << 1)));
}
int NumberOfVariables() const { return assignment_.size().value() / 2; }
private:
// The encoding is as follows:
// - assignment_.IsSet(literal.Index()) means literal is true.
// - assignment_.IsSet(literal.Index() ^ 1]) means literal is false.
// - If both are false, then the variable (and the literal) is unassigned.
Bitset64<LiteralIndex> assignment_;
friend class AssignmentView;
};
// For "hot" loop, it is better not to reload the Bitset64 pointer on each
// check.
class AssignmentView {
public:
explicit AssignmentView(const VariablesAssignment& assignment)
: view_(assignment.assignment_.const_view()) {}
bool LiteralIsFalse(Literal literal) const {
return view_[literal.NegatedIndex()];
}
bool LiteralIsTrue(Literal literal) const { return view_[literal.Index()]; }
private:
Bitset64<LiteralIndex>::ConstView view_;
};
// Forward declaration.
class SatClause;
class SatPropagator;
// Information about a variable assignment.
struct AssignmentInfo {
// The decision level at which this assignment was made. This starts at 0 and
// increases each time the solver takes a search decision.
//
// TODO(user): We may be able to get rid of that for faster enqueues. Most of
// the code only need to know if this is 0 or the highest level, and for the
// LBD computation, the literal of the conflict are already ordered by level,
// so we could do it fairly efficiently.
//
// TODO(user): We currently don't support more than 2^28 decision levels. That
// should be enough for most practical problem, but we should fail properly if
// this limit is reached.
uint32_t level : 28;
// The type of assignment (see AssignmentType below).
//
// Note(user): We currently don't support more than 16 types of assignment.
// This is checked in RegisterPropagator().
mutable uint32_t type : 4;
// The index of this assignment in the trail.
int32_t trail_index;
std::string DebugString() const {
return absl::StrFormat("level:%d type:%d trail_index:%d", level, type,
trail_index);
}
};
static_assert(sizeof(AssignmentInfo) == 8,
"ERROR_AssignmentInfo_is_not_well_compacted");
// Each literal on the trail will have an associated propagation "type" which is
// either one of these special types or the id of a propagator.
struct AssignmentType {
static constexpr int kCachedReason = 0;
static constexpr int kUnitReason = 1;
static constexpr int kSearchDecision = 2;
static constexpr int kSameReasonAs = 3;
// Propagator ids starts from there and are created dynamically.
static constexpr int kFirstFreePropagationId = 4;
};
// The solver trail stores the assignment made by the solver in order.
// This class is responsible for maintaining the assignment of each variable
// and the information of each assignment.
class Trail {
public:
Trail() {
current_info_.trail_index = 0;
current_info_.level = 0;
}
// This type is neither copyable nor movable.
Trail(const Trail&) = delete;
Trail& operator=(const Trail&) = delete;
void Resize(int num_variables);
// Registers a propagator. This assigns a unique id to this propagator and
// calls SetPropagatorId() on it.
void RegisterPropagator(SatPropagator* propagator);
// Enqueues the assignment that make the given literal true on the trail. This
// should only be called on unassigned variables.
void SetCurrentPropagatorId(int propagator_id) {
current_info_.type = propagator_id;
}
void FastEnqueue(Literal true_literal) {
DCHECK(!assignment_.VariableIsAssigned(true_literal.Variable()));
trail_[current_info_.trail_index] = true_literal;
info_[true_literal.Variable()] = current_info_;
assignment_.AssignFromTrueLiteral(true_literal);
++current_info_.trail_index;
}
void Enqueue(Literal true_literal, int propagator_id) {
SetCurrentPropagatorId(propagator_id);
FastEnqueue(true_literal);
}
// Specific Enqueue() version for the search decision.
void EnqueueSearchDecision(Literal true_literal) {
Enqueue(true_literal, AssignmentType::kSearchDecision);
}
// Specific Enqueue() version for a fixed variable.
void EnqueueWithUnitReason(Literal true_literal) {
Enqueue(true_literal, AssignmentType::kUnitReason);
}
// Some constraints propagate a lot of literals at once. In these cases, it is
// more efficient to have all the propagated literals except the first one
// referring to the reason of the first of them.
void EnqueueWithSameReasonAs(Literal true_literal,
BooleanVariable reference_var) {
reference_var_with_same_reason_as_[true_literal.Variable()] = reference_var;
Enqueue(true_literal, AssignmentType::kSameReasonAs);
}
// Enqueues the given literal using the current content of
// GetEmptyVectorToStoreReason() as the reason. This API is a bit more
// leanient and does not require the literal to be unassigned. If it is
// already assigned to false, then MutableConflict() will be set appropriately
// and this will return false otherwise this will enqueue the literal and
// returns true.
ABSL_MUST_USE_RESULT bool EnqueueWithStoredReason(Literal true_literal) {
if (assignment_.LiteralIsTrue(true_literal)) return true;
if (assignment_.LiteralIsFalse(true_literal)) {
*MutableConflict() = reasons_repository_[Index()];
MutableConflict()->push_back(true_literal);
return false;
}
Enqueue(true_literal, AssignmentType::kCachedReason);
const BooleanVariable var = true_literal.Variable();
reasons_[var] = reasons_repository_[info_[var].trail_index];
old_type_[var] = info_[var].type;
info_[var].type = AssignmentType::kCachedReason;
return true;
}
// Returns the reason why this variable was assigned.
//
// Note that this shouldn't be called on a variable at level zero, because we
// don't cleanup the reason data for these variables but the underlying
// clauses may have been deleted.
//
// If conflict_id >= 0, this indicate that this was called as part of the
// first-UIP procedure. It has a few implication:
// - The reason do not need to be cached and can be adapted to the current
// conflict.
// - Some data can be reused between two calls about the same conflict.
// - Note however that if the reason is a simple clause, we shouldn't adapt
// it because we rely on extra fact in the first UIP code where we detect
// subsumed clauses for instance.
absl::Span<const Literal> Reason(BooleanVariable var,
int64_t conflict_id = -1) const;
// Returns the "type" of an assignment (see AssignmentType). Note that this
// function never returns kSameReasonAs or kCachedReason, it instead returns
// the initial type that caused this assignment. As such, it is different
// from Info(var).type and the latter should not be used outside this class.
int AssignmentType(BooleanVariable var) const;
// If a variable was propagated with EnqueueWithSameReasonAs(), returns its
// reference variable. Otherwise return the given variable.
BooleanVariable ReferenceVarWithSameReason(BooleanVariable var) const;
// This can be used to get a location at which the reason for the literal
// at trail_index on the trail can be stored. This clears the vector before
// returning it.
std::vector<Literal>* GetEmptyVectorToStoreReason(int trail_index) const {
if (trail_index >= reasons_repository_.size()) {
reasons_repository_.resize(trail_index + 1);
}
reasons_repository_[trail_index].clear();
return &reasons_repository_[trail_index];
}
// Shortcut for GetEmptyVectorToStoreReason(Index()).
std::vector<Literal>* GetEmptyVectorToStoreReason() const {
return GetEmptyVectorToStoreReason(Index());
}
// Explicitly overwrite the reason so that the given propagator will be
// asked for it. This is currently only used by the BinaryImplicationGraph.
void ChangeReason(int trail_index, int propagator_id) {
const BooleanVariable var = trail_[trail_index].Variable();
info_[var].type = propagator_id;
old_type_[var] = propagator_id;
}
// Reverts the trail and underlying assignment to the given target trail
// index. Note that we do not touch the assignment info.
void Untrail(int target_trail_index) {
const int index = Index();
num_untrailed_enqueues_ += index - target_trail_index;
for (int i = target_trail_index; i < index; ++i) {
assignment_.UnassignLiteral(trail_[i]);
}
current_info_.trail_index = target_trail_index;
}
// Changes the decision level used by the next Enqueue().
void SetDecisionLevel(int level) { current_info_.level = level; }
int CurrentDecisionLevel() const { return current_info_.level; }
// Generic interface to set the current failing clause.
//
// Returns the address of a vector where a client can store the current
// conflict. This vector will be returned by the FailingClause() call.
std::vector<Literal>* MutableConflict() {
failing_sat_clause_ = nullptr;
return &conflict_;
}
// Returns the last conflict.
absl::Span<const Literal> FailingClause() const {
if (DEBUG_MODE && debug_checker_ != nullptr) {
CHECK(debug_checker_(conflict_));
}
return conflict_;
}
// Specific SatClause interface so we can update the conflict clause activity.
// Note that MutableConflict() automatically sets this to nullptr, so we can
// know whether or not the last conflict was caused by a clause.
void SetFailingSatClause(SatClause* clause) { failing_sat_clause_ = clause; }
SatClause* FailingSatClause() const { return failing_sat_clause_; }
// Getters.
int NumVariables() const { return trail_.size(); }
int64_t NumberOfEnqueues() const { return num_untrailed_enqueues_ + Index(); }
int Index() const { return current_info_.trail_index; }
// This accessor can return trail_.end(). operator[] cannot. This allows
// normal std:vector operations, such as assign(begin, end).
std::vector<Literal>::const_iterator IteratorAt(int index) const {
return trail_.begin() + index;
}
const Literal& operator[](int index) const { return trail_[index]; }
const VariablesAssignment& Assignment() const { return assignment_; }
const AssignmentInfo& Info(BooleanVariable var) const {
DCHECK_GE(var, 0);
DCHECK_LT(var, info_.size());
return info_[var];
}
// Print the current literals on the trail.
std::string DebugString() const {
std::string result;
for (int i = 0; i < current_info_.trail_index; ++i) {
if (!result.empty()) result += " ";
result += trail_[i].DebugString();
}
return result;
}
void RegisterDebugChecker(
std::function<bool(absl::Span<const Literal> clause)> checker) {
debug_checker_ = std::move(checker);
}
private:
int64_t num_untrailed_enqueues_ = 0;
AssignmentInfo current_info_;
VariablesAssignment assignment_;
std::vector<Literal> trail_;
std::vector<Literal> conflict_;
util_intops::StrongVector<BooleanVariable, AssignmentInfo> info_;
SatClause* failing_sat_clause_;
// Data used by EnqueueWithSameReasonAs().
util_intops::StrongVector<BooleanVariable, BooleanVariable>
reference_var_with_same_reason_as_;
// Reason cache. Mutable since we want the API to be the same whether the
// reason are cached or not.
//
// When a reason is computed for the first time, we change the type of the
// variable assignment to kCachedReason so that we know that if it is needed
// again the reason can just be retrieved by a direct access to reasons_. The
// old type is saved in old_type_ and can be retrieved by
// AssignmentType().
//
// Note(user): Changing the type is not "clean" but it is efficient. The idea
// is that it is important to do as little as possible when pushing/popping
// literals on the trail. Computing the reason happens a lot less often, so it
// is okay to do slightly more work then. Note also, that we don't need to
// do anything on "untrail", the kCachedReason type will be overwritten when
// the same variable is assigned again.
//
// TODO(user): An alternative would be to change the sign of the type. This
// would remove the need for a separate old_type_ vector, but it requires
// more bits for the type filed in AssignmentInfo.
//
// Note that we use a deque for the reason repository so that if we add
// variables, the memory address of the vectors (kept in reasons_) are still
// valid.
mutable std::deque<std::vector<Literal>> reasons_repository_;
mutable util_intops::StrongVector<BooleanVariable, absl::Span<const Literal>>
reasons_;
mutable util_intops::StrongVector<BooleanVariable, int> old_type_;
// This is used by RegisterPropagator() and Reason().
std::vector<SatPropagator*> propagators_;
std::function<bool(absl::Span<const Literal> clause)> debug_checker_ =
nullptr;
};
// Base class for all the SAT constraints.
class SatPropagator {
public:
explicit SatPropagator(const std::string& name)
: name_(name), propagator_id_(-1), propagation_trail_index_(0) {}
// This type is neither copyable nor movable.
SatPropagator(const SatPropagator&) = delete;
SatPropagator& operator=(const SatPropagator&) = delete;
virtual ~SatPropagator() = default;
// Sets/Gets this propagator unique id.
void SetPropagatorId(int id) { propagator_id_ = id; }
int PropagatorId() const { return propagator_id_; }
// Inspects the trail from propagation_trail_index_ until at least one literal
// is propagated. Returns false iff a conflict is detected (in which case
// trail->SetFailingClause() must be called).
//
// This must update propagation_trail_index_ so that all the literals before
// it have been propagated. In particular, if nothing was propagated, then
// PropagationIsDone() must return true.
virtual bool Propagate(Trail* trail) = 0;
// Reverts the state so that all the literals with a trail index greater or
// equal to the given one are not processed for propagation. Note that the
// trail current decision level is already reverted before this is called.
//
// TODO(user): Currently this is called at each Backtrack(), but we could
// bundle the calls in case multiple conflict one after the other are detected
// even before the Propagate() call of a SatPropagator is called.
//
// TODO(user): It is not yet 100% the case, but this can be guaranteed to be
// called with a trail index that will always be the start of a new decision
// level.
virtual void Untrail(const Trail& /*trail*/, int trail_index) {
propagation_trail_index_ = std::min(propagation_trail_index_, trail_index);
}
// Explains why the literal at given trail_index was propagated by returning a
// reason for this propagation. This will only be called for literals that are
// on the trail and were propagated by this class.
//
// The interpretation is that because all the literals of a reason were
// assigned to false, we could deduce the assignment of the given variable.
//
// The returned Span has to be valid until the literal is untrailed. A client
// can use trail_.GetEmptyVectorToStoreReason() if it doesn't have a memory
// location that already contains the reason.
//
// If conlict id is positive, then this is called during first UIP resolution
// and we will backtrack over this literal right away, so we don't need to
// have a span that survive more than once.
virtual absl::Span<const Literal> Reason(const Trail& /*trail*/,
int /*trail_index*/,
int64_t /*conflict_id*/) const {
LOG(FATAL) << "Not implemented.";
return {};
}
// Returns true if all the preconditions for Propagate() are satisfied.
// This is just meant to be used in a DCHECK.
bool PropagatePreconditionsAreSatisfied(const Trail& trail) const;
// Returns true iff all the trail was inspected by this propagator.
bool PropagationIsDone(const Trail& trail) const {
return propagation_trail_index_ == trail.Index();
}
// Small optimization: If a propagator does not contain any "constraints"
// there is no point calling propagate on it. Before each propagation, the
// solver will checks for emptiness, and construct an optimized list of
// propagator before looping many time over the list.
virtual bool IsEmpty() const { return false; }
protected:
const std::string name_;
int propagator_id_;
int propagation_trail_index_;
};
// ######################## Implementations below ########################
// TODO(user): A few of these method should be moved in a .cc
inline bool SatPropagator::PropagatePreconditionsAreSatisfied(
const Trail& trail) const {
if (propagation_trail_index_ > trail.Index()) {
LOG(INFO) << "Issue in '" << name_ << ":"
<< " propagation_trail_index_=" << propagation_trail_index_
<< " trail_.Index()=" << trail.Index();
return false;
}
if (propagation_trail_index_ < trail.Index() &&
trail.Info(trail[propagation_trail_index_].Variable()).level !=
trail.CurrentDecisionLevel()) {
LOG(INFO) << "Issue in '" << name_ << "':" << " propagation_trail_index_="
<< propagation_trail_index_ << " trail_.Index()=" << trail.Index()
<< " level_at_propagation_index="
<< trail.Info(trail[propagation_trail_index_].Variable()).level
<< " current_decision_level=" << trail.CurrentDecisionLevel();
return false;
}
return true;
}
inline void Trail::Resize(int num_variables) {
assignment_.Resize(num_variables);
info_.resize(num_variables);
trail_.resize(num_variables);
reasons_.resize(num_variables);
// TODO(user): these vectors are not always used. Initialize them
// dynamically.
old_type_.resize(num_variables);
reference_var_with_same_reason_as_.resize(num_variables);
}
inline void Trail::RegisterPropagator(SatPropagator* propagator) {
if (propagators_.empty()) {
propagators_.resize(AssignmentType::kFirstFreePropagationId);
}
CHECK_LT(propagators_.size(), 16);
propagator->SetPropagatorId(propagators_.size());
propagators_.push_back(propagator);
}
inline BooleanVariable Trail::ReferenceVarWithSameReason(
BooleanVariable var) const {
DCHECK(Assignment().VariableIsAssigned(var));
// Note that we don't use AssignmentType() here.
if (info_[var].type == AssignmentType::kSameReasonAs) {
var = reference_var_with_same_reason_as_[var];
DCHECK(Assignment().VariableIsAssigned(var));
DCHECK_NE(info_[var].type, AssignmentType::kSameReasonAs);
}
return var;
}
inline int Trail::AssignmentType(BooleanVariable var) const {
if (info_[var].type == AssignmentType::kSameReasonAs) {
var = reference_var_with_same_reason_as_[var];
DCHECK_NE(info_[var].type, AssignmentType::kSameReasonAs);
}
const int type = info_[var].type;
return type != AssignmentType::kCachedReason ? type : old_type_[var];
}
inline absl::Span<const Literal> Trail::Reason(BooleanVariable var,
int64_t conflict_id) const {
// Special case for AssignmentType::kSameReasonAs to avoid a recursive call.
var = ReferenceVarWithSameReason(var);
// Fast-track for cached reason.
if (info_[var].type == AssignmentType::kCachedReason) {
if (DEBUG_MODE && debug_checker_ != nullptr) {
std::vector<Literal> clause;
clause.assign(reasons_[var].begin(), reasons_[var].end());
clause.push_back(assignment_.GetTrueLiteralForAssignedVariable(var));
CHECK(debug_checker_(clause));
}
return reasons_[var];
}
const AssignmentInfo& info = info_[var];
if (info.type == AssignmentType::kUnitReason ||
info.type == AssignmentType::kSearchDecision) {
reasons_[var] = {};
} else {
DCHECK_LT(info.type, propagators_.size());
DCHECK(propagators_[info.type] != nullptr) << info.type;
reasons_[var] =
propagators_[info.type]->Reason(*this, info.trail_index, conflict_id);
}
old_type_[var] = info.type;
info_[var].type = AssignmentType::kCachedReason;
if (DEBUG_MODE && debug_checker_ != nullptr) {
std::vector<Literal> clause;
clause.assign(reasons_[var].begin(), reasons_[var].end());
clause.push_back(assignment_.GetTrueLiteralForAssignedVariable(var));
CHECK(debug_checker_(clause));
}
return reasons_[var];
}
} // namespace sat
} // namespace operations_research
#endif // OR_TOOLS_SAT_SAT_BASE_H_