-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy path2d_packing_brute_force.cc
691 lines (653 loc) · 27.4 KB
/
2d_packing_brute_force.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/2d_packing_brute_force.h"
#include <algorithm>
#include <array>
#include <limits>
#include <tuple>
#include <utility>
#include <vector>
#include "absl/container/inlined_vector.h"
#include "absl/log/check.h"
#include "absl/strings/str_cat.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/sat/diffn_util.h"
#include "ortools/sat/integer.h"
#include "ortools/util/bitset.h"
namespace operations_research {
namespace sat {
static constexpr int kMaxProblemSize = 16;
namespace {
enum class RectangleRelationship {
TOUCHING_NEITHER_LEFT_OR_BOTTOM,
TOUCHING_BOTTOM,
TOUCHING_LEFT,
OVERLAP,
};
RectangleRelationship GetRectangleRelationship(const Rectangle& rectangle,
const Rectangle& other) {
if (rectangle.x_min < other.x_max && other.x_min < rectangle.x_max &&
rectangle.y_min < other.y_max && other.y_min < rectangle.y_max) {
return RectangleRelationship::OVERLAP;
}
if (rectangle.x_min == other.x_max && rectangle.y_min < other.y_max &&
other.y_min < rectangle.y_max) {
return RectangleRelationship::TOUCHING_LEFT;
}
if (rectangle.x_min < other.x_max && other.x_min < rectangle.x_max &&
rectangle.y_min == other.y_max) {
return RectangleRelationship::TOUCHING_BOTTOM;
}
return RectangleRelationship::TOUCHING_NEITHER_LEFT_OR_BOTTOM;
}
bool ShouldPlaceItemAtPosition(
int i, const Rectangle& item_position,
std::pair<IntegerValue, IntegerValue> bounding_box_size,
absl::Span<const Rectangle> item_positions,
const Bitset64<int>& placed_item_indexes) {
// Check if it fits in the BB.
if (item_position.x_max > bounding_box_size.first ||
item_position.y_max > bounding_box_size.second) {
return false;
}
// Break symmetry: force 0th item to be in the bottom left quarter.
if (i == 0 && (2 * item_position.x_min >
bounding_box_size.first - item_position.SizeX() ||
2 * item_position.y_min >
bounding_box_size.second - item_position.SizeY())) {
return false;
}
// Check if it is conflicting with another item.
bool touches_something_on_left = item_position.x_min == 0;
bool touches_something_on_bottom = item_position.y_min == 0;
for (const int j : placed_item_indexes) {
DCHECK_NE(i, j);
const RectangleRelationship pos =
GetRectangleRelationship(item_position, item_positions[j]);
if (pos == RectangleRelationship::OVERLAP) {
return false;
}
touches_something_on_left = touches_something_on_left ||
pos == RectangleRelationship::TOUCHING_LEFT;
touches_something_on_bottom = touches_something_on_bottom ||
pos == RectangleRelationship::TOUCHING_BOTTOM;
}
// Finally, check if it touching something both on the bottom and to the left.
if (!touches_something_on_left || !touches_something_on_bottom) {
return false;
}
return true;
}
struct PotentialPositionForItem {
IntegerValue x;
IntegerValue y;
bool already_explored;
Rectangle GetRectangle(IntegerValue x_size, IntegerValue y_size) const {
return {.x_min = x, .x_max = x + x_size, .y_min = y, .y_max = y + y_size};
}
};
// This implementation search for a solution in the following order:
// - first place the 0-th item in the bottom left corner;
// - then place the 1-th item either on the bottom of the bounding box to the
// right of the 0-th item, or on the left of the bounding box on top of it;
// - keep placing items, while respecting that each item should touch something
// on both its bottom and left sides until either all items are placed (in
// this case a solution is found and return) or we found an item that cannot
// be placed on any possible solution.
// - if an item cannot be placed, backtrack: try to place the last successfully
// placed item in another position.
//
// This is a recursive implementation, each call will place the first non placed
// item in a fixed order. Backtrack occur when we return from a recursive call.
//
// This return false iff it is infeasible to place the other items given the
// already placed ones.
//
// This implementation is very similar to the "Left-Most Active Only" method
// described in Clautiaux, François, Jacques Carlier, and Aziz Moukrim. "A new
// exact method for the two-dimensional orthogonal packing problem." European
// Journal of Operational Research 183.3 (2007): 1196-1211.
//
// TODO(user): try the graph-based algorithm by S. Fekete, J. Shepers, and
// J. Van Der Ween, https://arxiv.org/abs/cs/0604045.
bool BruteForceOrthogonalPackingImpl(
absl::Span<const IntegerValue> sizes_x,
absl::Span<const IntegerValue> sizes_y,
std::pair<IntegerValue, IntegerValue> bounding_box_size,
IntegerValue smallest_x, IntegerValue smallest_y,
absl::Span<Rectangle> item_positions, Bitset64<int>& placed_item_indexes,
absl::Span<const absl::InlinedVector<PotentialPositionForItem, 16>>
potential_item_positions,
IntegerValue slack) {
const auto add_position_if_valid =
[&item_positions, bounding_box_size, &sizes_x, &sizes_y,
&placed_item_indexes](
absl::InlinedVector<PotentialPositionForItem, 16>& positions, int i,
IntegerValue x, IntegerValue y) {
const Rectangle rect = {.x_min = x,
.x_max = x + sizes_x[i],
.y_min = y,
.y_max = y + sizes_y[i]};
if (ShouldPlaceItemAtPosition(i, rect, bounding_box_size,
item_positions, placed_item_indexes)) {
positions.push_back({x, y, false});
}
};
const int num_items = sizes_x.size();
bool has_unplaced_item = false;
for (int i = 0; i < num_items; ++i) {
if (placed_item_indexes[i]) {
continue;
}
if (potential_item_positions[i].empty()) {
return false;
}
has_unplaced_item = true;
placed_item_indexes.Set(i);
for (const PotentialPositionForItem& potential_position :
potential_item_positions[i]) {
if (potential_position.already_explored) {
continue;
}
// Place the item on its candidate position.
item_positions[i] =
potential_position.GetRectangle(sizes_x[i], sizes_y[i]);
const Rectangle& item_position = item_positions[i];
IntegerValue slack_loss = 0;
if (bounding_box_size.first - item_position.x_max < smallest_x) {
// After placing this item, nothing will fit between it and the top of
// the bounding box. Thus we have some space that will remain empty and
// we can deduce it from our budget.
slack_loss += item_position.SizeY() *
(bounding_box_size.first - item_position.x_max);
}
if (bounding_box_size.second - item_position.y_max < smallest_y) {
// Same as above but with the right edge.
slack_loss += item_position.SizeX() *
(bounding_box_size.second - item_position.y_max);
}
if (slack < slack_loss) {
continue;
}
// Now the hard part of the algorithm: create the new "potential
// positions" vector after placing this item. Describing the actual set of
// acceptable places to put consider for the next item in the search would
// be pretty complex. For example:
// +----------------------------+
// | |
// |x |
// |--------+ |
// |88888888| |
// |88888888| |
// |--------+ |
// |####| |
// |####|x x |
// |####| +------+ |
// |####| |......| |
// |####| |......| |
// |####| |......| |
// |####|x x |......| |
// |####+---------+......| |
// |####|OOOOOOOOO|......| |
// |####|OOOOOOOOO|......| |
// |####|OOOOOOOOO|......|x |
// +----+---------+------+------+
//
// We consider that every item must be touching something (other item or
// the box boundaries) to the left and to the bottom. Thus, when we add a
// new item, it is enough to consider at all positions where it would
// touch the new item on the bottom and something else on the left or
// touch the new item on the left and something else on the bottom. So we
// consider the following points:
// - all previous positions if they didn't got invalid due to the new
// item;
// - new position are derived getting the right-top most corner of the
// added item and connecting it to the bottom and the left with a line.
// New potential positions are the intersection of this line with either
// the current items or the box. For example, if we add a box to the
// example above (representing the two lines by '*'):
// +----------------------------+
// | |
// | |
// |--------+ |
// |88888888| |
// |88888888| |
// |--------+ |
// |####| |
// |####| |
// |####| +------+ |
// |x###|x |......|x |
// |************************** |
// |####| |......|@@@* |
// |####| |......|@@@* |
// |####+---------+......|@@@* |
// |####|OOOOOOOOO|......|@@@* |
// |####|OOOOOOOOO|......|@@@* |
// |####|OOOOOOOOO|......|@@@*x |
// +----+---------+------+------+
//
// This method finds potential locations that are not useful for any item,
// (like the point in the left boundary in the example above) but we will
// detect that by testing each item one by one. Importantly, we only pass
// valid positions down to the next search level.
std::array<absl::InlinedVector<PotentialPositionForItem, 16>,
kMaxProblemSize>
new_potential_positions_storage;
absl::Span<absl::InlinedVector<PotentialPositionForItem, 16>>
new_potential_positions(new_potential_positions_storage.data(),
num_items);
for (const int k : placed_item_indexes) {
if (k == i) {
continue;
}
const bool add_below =
// We only add points below this one...
item_positions[k].y_max <= item_position.y_max &&
// ...and where we can fit at least the smallest element.
item_position.x_max + smallest_x <= bounding_box_size.first &&
item_positions[k].y_max + smallest_y <= bounding_box_size.second;
const bool add_left =
item_positions[k].x_max <= item_position.x_max &&
item_positions[k].x_max + smallest_x <= bounding_box_size.first &&
item_position.y_max + smallest_y <= bounding_box_size.second;
for (int j = 0; j < num_items; ++j) {
if (k == j || placed_item_indexes[j]) {
continue;
}
if (add_below) {
add_position_if_valid(new_potential_positions[j], j,
item_position.x_max, item_positions[k].y_max);
}
if (add_left) {
add_position_if_valid(new_potential_positions[j], j,
item_positions[k].x_max, item_position.y_max);
}
}
}
bool is_unfeasible = false;
for (int j = 0; j < num_items; ++j) {
// No positions to attribute to the item we just placed.
if (i == j || placed_item_indexes[j]) {
continue;
}
// First copy previously valid positions that remain valid.
for (const PotentialPositionForItem& original_position :
potential_item_positions[j]) {
if (!original_position.GetRectangle(sizes_x[j], sizes_y[j])
.IsDisjoint(item_position)) {
// That was a valid position for item j, but now it is in conflict
// with newly added item i.
continue;
}
if (j < i) {
// We already explored all items of index less than i in all their
// current possible positions and they are all unfeasible. We still
// keep track of whether it fit there or not, since having any item
// that don't fit anywhere is a good stopping criteria. But we don't
// have to retest those positions down in the search tree.
PotentialPositionForItem position = original_position;
position.already_explored = true;
new_potential_positions[j].push_back(position);
} else {
new_potential_positions[j].push_back(original_position);
}
}
add_position_if_valid(new_potential_positions[j], j,
item_positions[i].x_max, 0);
add_position_if_valid(new_potential_positions[j], j, 0,
item_positions[i].y_max);
if (new_potential_positions[j].empty()) {
// After placing the item i, there is no valid place to choose for the
// item j. We must pick another placement for i.
is_unfeasible = true;
break;
}
}
if (is_unfeasible) {
continue;
}
if (BruteForceOrthogonalPackingImpl(
sizes_x, sizes_y, bounding_box_size, smallest_x, smallest_y,
item_positions, placed_item_indexes, new_potential_positions,
slack - slack_loss)) {
return true;
}
}
// Placing this item at the current bottom-left positions level failed.
// Restore placed_item_indexes to its original value and try another one.
placed_item_indexes.Set(i, false);
}
return !has_unplaced_item;
}
bool BruteForceOrthogonalPackingNoPreprocessing(
const absl::Span<PermutableItem> items,
const std::pair<IntegerValue, IntegerValue> bounding_box_size) {
IntegerValue smallest_x = std::numeric_limits<IntegerValue>::max();
IntegerValue smallest_y = std::numeric_limits<IntegerValue>::max();
const int num_items = items.size();
CHECK_LE(num_items, kMaxProblemSize);
IntegerValue slack = bounding_box_size.first * bounding_box_size.second;
for (const PermutableItem& item : items) {
smallest_x = std::min(smallest_x, item.size_x);
smallest_y = std::min(smallest_y, item.size_y);
slack -= item.size_x * item.size_y;
if (item.size_x > bounding_box_size.first ||
item.size_y > bounding_box_size.second) {
return false;
}
}
if (slack < 0) {
return false;
}
std::sort(items.begin(), items.end(),
[](const PermutableItem& a, const PermutableItem& b) {
return std::make_tuple(a.size_x * a.size_y, a.index) >
std::make_tuple(b.size_x * b.size_y, b.index);
});
std::array<IntegerValue, kMaxProblemSize> new_sizes_x_storage,
new_sizes_y_storage;
absl::Span<IntegerValue> new_sizes_x(new_sizes_x_storage.data(), num_items);
absl::Span<IntegerValue> new_sizes_y(new_sizes_y_storage.data(), num_items);
std::array<absl::InlinedVector<PotentialPositionForItem, 16>, kMaxProblemSize>
potential_item_positions_storage;
absl::Span<absl::InlinedVector<PotentialPositionForItem, 16>>
potential_item_positions(potential_item_positions_storage.data(),
num_items);
for (int i = 0; i < num_items; ++i) {
new_sizes_x[i] = items[i].size_x;
new_sizes_y[i] = items[i].size_y;
potential_item_positions[i].push_back({0, 0, false});
}
std::array<Rectangle, kMaxProblemSize> item_positions_storage;
absl::Span<Rectangle> item_positions(item_positions_storage.data(),
num_items);
Bitset64<int> placed_item_indexes(num_items);
const bool found_solution = BruteForceOrthogonalPackingImpl(
new_sizes_x, new_sizes_y, bounding_box_size, smallest_x, smallest_y,
item_positions, placed_item_indexes, potential_item_positions, slack);
if (!found_solution) {
return false;
}
for (int i = 0; i < num_items; ++i) {
items[i].position = item_positions[i];
}
return true;
}
// This function tries to pack a set of "tall" items with all the "shallow"
// items that can fit in the area around them. See discussion about
// the identically-feasible function v_1 in [1]. For example, for the packing:
//
// +----------------------------+
// |------+ |
// |888888+----| |
// |888888|&&&&| |
// |------+&&&&| |
// |####| |&&&&| |
// |####| +----+ |
// |####| +------+ |
// |####| |......| |
// |####| |......|@@@ |
// |####+---------+......|@@@ |
// |####|OOOOOOOOO|......|@@@ |
// |####|OOOOOOOOO|......|@@@ |
// |####|OOOOOOOOO|......|@@@ |
// |####|OOOOOOOOO|......|@@@ |
// |####|OOOOOOOOO|......|@@@ |
// +----+---------+------+------+
//
// We can move all "tall" and "shallow" items to the left and pack all the
// shallow items on the space remaining on the top of the tall items:
//
// +----------------------------+
// |------+ |
// |888888+----| |
// |888888|&&&&| |
// |------+&&&&| |
// |####| |&&&&| |
// |####| +----+ |
// |####+------+ |
// |####|......| |
// |####|......| @@@ |
// |####|......+---------+@@@ |
// |####|......|OOOOOOOOO|@@@ |
// |####|......|OOOOOOOOO|@@@ |
// |####|......|OOOOOOOOO|@@@ |
// |####|......|OOOOOOOOO|@@@ |
// |####|......|OOOOOOOOO|@@@ |
// +----+------+---------+------+
//
// If the packing is successful, we can remove both set from the problem:
// +----------------+
// | |
// | |
// | |
// | |
// | |
// | |
// | |
// | |
// | @@@ |
// |---------+@@@ |
// |OOOOOOOOO|@@@ |
// |OOOOOOOOO|@@@ |
// |OOOOOOOOO|@@@ |
// |OOOOOOOOO|@@@ |
// |OOOOOOOOO|@@@ |
// +---------+------+
//
// [1] Carlier, Jacques, François Clautiaux, and Aziz Moukrim. "New reduction
// procedures and lower bounds for the two-dimensional bin packing problem with
// fixed orientation." Computers & Operations Research 34.8 (2007): 2223-2250.
//
// See Preprocess() for the API documentation.
bool PreprocessLargeWithSmallX(
absl::Span<PermutableItem>& items,
std::pair<IntegerValue, IntegerValue>& bounding_box_size,
int max_complexity) {
// The simplest way to implement this is to sort the shallow items alongside
// their corresponding tall items. More precisely, the smallest and largest
// items are at the end of the list. The reason we put the most interesting
// values in the end even if this means we want to iterate on the list
// backward is that if the heuristic is successful we will trim them from the
// back of the list of unfixed items.
std::sort(
items.begin(), items.end(),
[&bounding_box_size](const PermutableItem& a, const PermutableItem& b) {
const bool a_is_small = 2 * a.size_x <= bounding_box_size.first;
const bool b_is_small = 2 * b.size_x <= bounding_box_size.first;
const IntegerValue a_size_for_comp =
a_is_small ? a.size_x : bounding_box_size.first - a.size_x;
const IntegerValue b_size_for_comp =
b_is_small ? b.size_x : bounding_box_size.first - b.size_x;
return std::make_tuple(a_size_for_comp, !a_is_small, a.index) >
std::make_tuple(b_size_for_comp, !b_is_small, b.index);
});
IntegerValue total_large_item_width = 0;
IntegerValue largest_small_item_height = 0;
for (int i = items.size() - 1; i >= 1; --i) {
if (2 * items[i].size_x <= bounding_box_size.first) {
largest_small_item_height = items[i].size_x;
continue;
}
DCHECK_LE(items[i].size_x + largest_small_item_height,
bounding_box_size.first);
// We found a big item. So all values that we visited before are either
// taller than it or shallow enough to fit on top of it. Try to fit all that
// together!
if (items.subspan(i).size() > max_complexity) {
return false;
}
total_large_item_width += items[i].size_y;
if (BruteForceOrthogonalPackingNoPreprocessing(
items.subspan(i),
{bounding_box_size.first, total_large_item_width})) {
bounding_box_size.second -= total_large_item_width;
for (auto& item : items.subspan(i)) {
item.position.y_min += bounding_box_size.second;
item.position.y_max += bounding_box_size.second;
}
items = items.subspan(0, i);
return true;
}
}
return false;
}
// Same API as Preprocess().
bool PreprocessLargeWithSmallY(
absl::Span<PermutableItem>& items,
std::pair<IntegerValue, IntegerValue>& bounding_box_size,
int max_complexity) {
absl::Span<PermutableItem> orig_items = items;
for (PermutableItem& item : orig_items) {
std::swap(item.size_x, item.size_y);
std::swap(item.position.x_min, item.position.y_min);
std::swap(item.position.x_max, item.position.y_max);
}
std::swap(bounding_box_size.first, bounding_box_size.second);
const bool ret =
PreprocessLargeWithSmallX(items, bounding_box_size, max_complexity);
std::swap(bounding_box_size.first, bounding_box_size.second);
for (PermutableItem& item : orig_items) {
std::swap(item.size_x, item.size_y);
std::swap(item.position.x_min, item.position.y_min);
std::swap(item.position.x_max, item.position.y_max);
}
return ret;
}
} // namespace
// Try to find an equivalent smaller OPP problem by fixing large items.
// The API is a bit unusual: it takes a reference to a mutable Span of sizes and
// rectangles. When this function finds an item that can be fixed, it sets
// the position of the PermutableItem, reorders `items` to put that item in the
// end of the span and then resizes the span so it contain only non-fixed items.
//
// Note that the position of input items is not used and the position of
// non-fixed items will not be modified by this function.
bool Preprocess(absl::Span<PermutableItem>& items,
std::pair<IntegerValue, IntegerValue>& bounding_box_size,
int max_complexity) {
const int num_items = items.size();
if (num_items == 1) {
return false;
}
IntegerValue smallest_x = std::numeric_limits<IntegerValue>::max();
IntegerValue largest_x = std::numeric_limits<IntegerValue>::min();
IntegerValue smallest_y = std::numeric_limits<IntegerValue>::max();
IntegerValue largest_y = std::numeric_limits<IntegerValue>::min();
int largest_x_idx = -1;
int largest_y_idx = -1;
for (int i = 0; i < num_items; ++i) {
if (items[i].size_x > largest_x) {
largest_x = items[i].size_x;
largest_x_idx = i;
}
if (items[i].size_y > largest_y) {
largest_y = items[i].size_y;
largest_y_idx = i;
}
smallest_x = std::min(smallest_x, items[i].size_x);
smallest_y = std::min(smallest_y, items[i].size_y);
}
if (largest_x > bounding_box_size.first ||
largest_y > bounding_box_size.second) {
// No point in optimizing obviously infeasible instance.
return false;
}
const auto remove_item = [&items](int index_to_remove) {
std::swap(items[index_to_remove], items.back());
items.remove_suffix(1);
};
if (largest_x + smallest_x > bounding_box_size.first) {
// No item (not even the narrowest one) fit alongside the widest item. So we
// care only about fitting the remaining items in the remaining space.
bounding_box_size.second -= items[largest_x_idx].size_y;
items[largest_x_idx].position = {
.x_min = 0,
.x_max = largest_x,
.y_min = bounding_box_size.second,
.y_max = bounding_box_size.second + items[largest_x_idx].size_y};
remove_item(largest_x_idx);
Preprocess(items, bounding_box_size, max_complexity);
return true;
}
if (largest_y + smallest_y > bounding_box_size.second) {
bounding_box_size.first -= items[largest_y_idx].size_x;
items[largest_y_idx].position = {
.x_min = bounding_box_size.first,
.x_max = bounding_box_size.first + items[largest_y_idx].size_x,
.y_min = 0,
.y_max = largest_y};
remove_item(largest_y_idx);
Preprocess(items, bounding_box_size, max_complexity);
return true;
}
if (PreprocessLargeWithSmallX(items, bounding_box_size, max_complexity)) {
Preprocess(items, bounding_box_size, max_complexity);
return true;
}
if (PreprocessLargeWithSmallY(items, bounding_box_size, max_complexity)) {
Preprocess(items, bounding_box_size, max_complexity);
return true;
}
return false;
}
BruteForceResult BruteForceOrthogonalPacking(
absl::Span<const IntegerValue> sizes_x,
absl::Span<const IntegerValue> sizes_y,
std::pair<IntegerValue, IntegerValue> bounding_box_size,
int max_complexity) {
const int num_items = sizes_x.size();
if (num_items > 2 * max_complexity) {
// It is unlikely that preprocessing will remove half of the items, so don't
// lose time trying.
return {.status = BruteForceResult::Status::kTooBig};
}
CHECK_LE(num_items, kMaxProblemSize);
std::array<PermutableItem, kMaxProblemSize> items_storage;
absl::Span<PermutableItem> items(items_storage.data(), num_items);
for (int i = 0; i < num_items; ++i) {
items[i] = {
.size_x = sizes_x[i], .size_y = sizes_y[i], .index = i, .position = {}};
}
absl::Span<PermutableItem> post_processed_items = items;
std::pair<IntegerValue, IntegerValue> post_processed_bounding_box_size =
bounding_box_size;
const bool post_processed =
Preprocess(post_processed_items, post_processed_bounding_box_size,
max_complexity - 1);
if (post_processed_items.size() > max_complexity) {
return {.status = BruteForceResult::Status::kTooBig};
}
const bool is_feasible = BruteForceOrthogonalPackingNoPreprocessing(
post_processed_items, post_processed_bounding_box_size);
VLOG_EVERY_N_SEC(2, 3)
<< "Solved by brute force a problem of " << num_items << " items"
<< (post_processed ? absl::StrCat(" (", post_processed_items.size(),
" after preprocessing)")
: "")
<< ": solution " << (is_feasible ? "found" : "not found") << ".";
if (!is_feasible) {
return {.status = BruteForceResult::Status::kNoSolutionExists};
}
std::vector<Rectangle> result(num_items);
for (const PermutableItem& item : items) {
result[item.index] = item.position;
}
// VLOG_EVERY_N_SEC(3, 3) << "Found a feasible packing by brute force. Dot:\n "
// << RenderDot(bounding_box_size, result);
return {.status = BruteForceResult::Status::kFoundSolution,
.positions_for_solution = result};
}
} // namespace sat
} // namespace operations_research