-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy path2d_orthogonal_packing.cc
882 lines (816 loc) · 34.5 KB
/
2d_orthogonal_packing.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/sat/2d_orthogonal_packing.h"
#include <algorithm>
#include <cstdint>
#include <limits>
#include <optional>
#include <string>
#include <tuple>
#include <utility>
#include <vector>
#include "absl/log/check.h"
#include "absl/numeric/bits.h"
#include "absl/random/distributions.h"
#include "absl/types/span.h"
#include "ortools/base/logging.h"
#include "ortools/sat/2d_packing_brute_force.h"
#include "ortools/sat/integer.h"
#include "ortools/sat/util.h"
#include "ortools/util/bitset.h"
namespace operations_research {
namespace sat {
OrthogonalPackingInfeasibilityDetector::
~OrthogonalPackingInfeasibilityDetector() {
if (!VLOG_IS_ON(1)) return;
std::vector<std::pair<std::string, int64_t>> stats;
stats.push_back(
{"OrthogonalPackingInfeasibilityDetector/called", num_calls_});
stats.push_back(
{"OrthogonalPackingInfeasibilityDetector/conflicts", num_conflicts_});
stats.push_back({"OrthogonalPackingInfeasibilityDetector/dff0_conflicts",
num_conflicts_dff0_});
stats.push_back({"OrthogonalPackingInfeasibilityDetector/dff2_conflicts",
num_conflicts_dff2_});
stats.push_back({"OrthogonalPackingInfeasibilityDetector/trivial_conflicts",
num_trivial_conflicts_});
stats.push_back({"OrthogonalPackingInfeasibilityDetector/conflicts_two_items",
num_conflicts_two_items_});
stats.push_back({"OrthogonalPackingInfeasibilityDetector/no_energy_conflict",
num_scheduling_possible_});
stats.push_back({"OrthogonalPackingInfeasibilityDetector/brute_force_calls",
num_brute_force_calls_});
stats.push_back(
{"OrthogonalPackingInfeasibilityDetector/brute_force_conflicts",
num_brute_force_conflicts_});
stats.push_back(
{"OrthogonalPackingInfeasibilityDetector/brute_force_relaxations",
num_brute_force_relaxation_});
shared_stats_->AddStats(stats);
}
namespace {
std::optional<std::pair<int, int>> FindPairwiseConflict(
absl::Span<const IntegerValue> sizes_x,
absl::Span<const IntegerValue> sizes_y,
std::pair<IntegerValue, IntegerValue> bounding_box_size,
const std::vector<int>& index_by_decreasing_x_size,
const std::vector<int>& index_by_decreasing_y_size) {
// Look for pairwise incompatible pairs by using the logic such conflict can
// only happen between a "tall" item a "wide" item.
int x_idx = 0;
int y_idx = 0;
while (x_idx < index_by_decreasing_x_size.size() &&
y_idx < index_by_decreasing_y_size.size()) {
if (index_by_decreasing_x_size[x_idx] ==
index_by_decreasing_y_size[y_idx]) {
if (sizes_x[index_by_decreasing_x_size[x_idx]] >
sizes_y[index_by_decreasing_x_size[x_idx]]) {
y_idx++;
} else {
x_idx++;
}
continue;
}
const bool overlap_on_x = (sizes_x[index_by_decreasing_x_size[x_idx]] +
sizes_x[index_by_decreasing_y_size[y_idx]] >
bounding_box_size.first);
const bool overlap_on_y = (sizes_y[index_by_decreasing_x_size[x_idx]] +
sizes_y[index_by_decreasing_y_size[y_idx]] >
bounding_box_size.second);
if (overlap_on_x && overlap_on_y) {
return std::make_pair(index_by_decreasing_x_size[x_idx],
index_by_decreasing_y_size[y_idx]);
} else if (overlap_on_x) {
x_idx++;
} else if (overlap_on_y) {
y_idx++;
} else {
y_idx++;
}
}
return std::nullopt;
}
IntegerValue RoundingLowestInverse(IntegerValue y, IntegerValue c_k,
IntegerValue max_x, IntegerValue k) {
DCHECK_GE(y, 0);
DCHECK_LE(y, 2 * c_k);
IntegerValue ret = std::numeric_limits<IntegerValue>::max();
// Are we in the case 2 * x == max_x_?
if (y <= c_k && (max_x.value() & 1) == 0) {
const IntegerValue inverse_mid = max_x / 2;
ret = std::min(ret, inverse_mid);
if (y == c_k && y.value() & 1) {
// This is the only valid case for odd x.
return ret;
}
}
// The "perfect odd" case is handled above, round up y to an even value.
y += y.value() & 1;
// Check the case 2 * x > max_x_.
const IntegerValue inverse_high = max_x - k * (c_k - y / 2);
if (2 * inverse_high > max_x) {
// We have an inverse in this domain, let's find its minimum value (when
// the division rounds down the most) but don't let it go outside the
// domain.
const IntegerValue lowest_inverse_high =
std::max(max_x / 2 + 1, inverse_high - k + 1);
ret = std::min(ret, lowest_inverse_high);
}
// Check the case 2 * x < max_x_.
const IntegerValue inverse_low = k * y / 2;
if (2 * inverse_low < max_x) {
ret = std::min(ret, inverse_low);
}
return ret;
}
} // namespace
IntegerValue RoundingDualFeasibleFunction::LowestInverse(IntegerValue y) const {
return RoundingLowestInverse(y, c_k_, max_x_, k_);
}
IntegerValue RoundingDualFeasibleFunctionPowerOfTwo::LowestInverse(
IntegerValue y) const {
return RoundingLowestInverse(y, c_k_, max_x_, IntegerValue(1) << log2_k_);
}
// Check for conflict using the `f_0^k` dual feasible function (see
// documentation for DualFeasibleFunctionF0). This function tries all possible
// values of the `k` parameter and returns the best conflict found (according to
// OrthogonalPackingResult::IsBetterThan) if any.
//
// The current implementation is a bit more general than a simple check using
// f_0 described above. This implementation can take a function g(x) that is
// non-decreasing and satisfy g(0)=0 and it will check for conflict using
// g(f_0^k(x)) for all values of k, but without recomputing g(x) `k` times. This
// is handy if g() is a DFF that is slow to compute. g(x) is described by the
// vector g_x[i] = g(sizes_x[i]) and the variable g_max = g(x_bb_size).
//
// The algorithm is the same if we swap the x and y dimension.
OrthogonalPackingResult OrthogonalPackingInfeasibilityDetector::GetDffConflict(
absl::Span<const IntegerValue> sizes_x,
absl::Span<const IntegerValue> sizes_y,
absl::Span<const int> index_by_decreasing_x_size,
absl::Span<const IntegerValue> g_x, IntegerValue g_max,
IntegerValue x_bb_size, IntegerValue total_energy, IntegerValue bb_area,
IntegerValue* best_k) {
// If we found a conflict for a k parameter, which is rare, recompute the
// total used energy consumed by the items to find the minimal set of
// conflicting items.
int num_items = sizes_x.size();
auto build_result = [&sizes_x, &sizes_y, num_items, &x_bb_size, &bb_area,
&g_max, &g_x](const IntegerValue k) {
std::vector<std::pair<int, IntegerValue>> index_to_energy;
index_to_energy.reserve(num_items);
for (int i = 0; i < num_items; i++) {
IntegerValue point_value;
if (sizes_x[i] > x_bb_size - k) {
point_value = g_max;
} else if (sizes_x[i] < k) {
continue;
} else {
point_value = g_x[i];
}
index_to_energy.push_back({i, point_value * sizes_y[i]});
}
std::sort(index_to_energy.begin(), index_to_energy.end(),
[](const std::pair<int, IntegerValue>& a,
const std::pair<int, IntegerValue>& b) {
return a.second > b.second;
});
IntegerValue recomputed_energy = 0;
for (int i = 0; i < index_to_energy.size(); i++) {
recomputed_energy += index_to_energy[i].second;
if (recomputed_energy > bb_area) {
OrthogonalPackingResult result(
OrthogonalPackingResult::Status::INFEASIBLE);
result.conflict_type_ = OrthogonalPackingResult::ConflictType::DFF_F0;
result.items_participating_on_conflict_.resize(i + 1);
for (int j = 0; j <= i; j++) {
const int index = index_to_energy[j].first;
result.items_participating_on_conflict_[j] = {
.index = index,
.size_x = sizes_x[index],
.size_y = sizes_y[index]};
}
result.slack_ = 0;
return result;
}
}
LOG(FATAL) << "build_result called with no conflict";
};
// One thing we use in this implementation is that not all values of k are
// interesting: what can cause an energy conflict is increasing the size of
// the large items, removing the small ones makes it less constrained and we
// do it only to preserve correctness. Thus, it is enough to check the values
// of k that are just small enough to enlarge a large item. That means that
// large items and small ones are not symmetric with respect to what values of
// k are important.
IntegerValue current_energy = total_energy;
OrthogonalPackingResult best_result;
if (current_energy > bb_area) {
best_result = build_result(0);
*best_k = 0;
}
// We keep an index on the largest item yet-to-be enlarged and the smallest
// one yet-to-be removed.
int removing_item_index = index_by_decreasing_x_size.size() - 1;
int enlarging_item_index = 0;
while (enlarging_item_index < index_by_decreasing_x_size.size()) {
int index = index_by_decreasing_x_size[enlarging_item_index];
IntegerValue size = sizes_x[index];
// Note that since `size_x` is decreasing, we test increasingly large
// values of k. Also note that a item with size `k` cannot fit alongside
// an item with size `size_x`, but smaller ones can.
const IntegerValue k = x_bb_size - size + 1;
if (2 * k > x_bb_size) {
break;
}
// First, add the area contribution of enlarging the all the items of size
// exactly size_x. All larger items were already enlarged in the previous
// iterations.
do {
index = index_by_decreasing_x_size[enlarging_item_index];
size = sizes_x[index];
current_energy += (g_max - g_x[index]) * sizes_y[index];
enlarging_item_index++;
} while (enlarging_item_index < index_by_decreasing_x_size.size() &&
sizes_x[index_by_decreasing_x_size[enlarging_item_index]] == size);
// Now remove the area contribution of removing all the items smaller than
// k that were not removed before.
while (removing_item_index >= 0 &&
sizes_x[index_by_decreasing_x_size[removing_item_index]] < k) {
const int remove_idx = index_by_decreasing_x_size[removing_item_index];
current_energy -= g_x[remove_idx] * sizes_y[remove_idx];
removing_item_index--;
}
if (current_energy > bb_area) {
OrthogonalPackingResult current_result = build_result(k);
if (current_result.IsBetterThan(best_result)) {
best_result = current_result;
*best_k = k;
}
}
}
return best_result;
}
namespace {
// Tries a simple heuristic to find a solution for the Resource-Constrained
// Project Scheduling Problem (RCPSP). The RCPSP can be mapped to a
// 2d bin packing where one dimension (say, x) is chosen to represent the time,
// and every item is cut into items with size_x = 1 that must remain consecutive
// in the x-axis but do not need to be aligned on the y axis. This is often
// called the cumulative relaxation of the 2d bin packing problem.
//
// Bin-packing solution RCPSP solution
// --------------- ---------------
// | ********** | | ***** |
// | ********** | | ***** |
// | ##### | | **#####*** |
// | ##### | | **#####*** |
// --------------- ---------------
//
// One interesting property is if we find an energy conflict using a
// superadditive function it means the problem is infeasible both interpreted as
// a 2d bin packing and as a RCPSP problem. In practice, that means that if we
// find a RCPSP solution for a 2d bin packing problem, there is no point on
// using Maximal DFFs to search for energy conflicts.
//
// Returns true if it found a feasible solution to the RCPSP problem.
bool FindHeuristicSchedulingSolution(
absl::Span<const IntegerValue> sizes,
absl::Span<const IntegerValue> demands,
absl::Span<const int> heuristic_order, IntegerValue global_end_max,
IntegerValue capacity_max,
std::vector<std::pair<IntegerValue, IntegerValue>>& profile,
std::vector<std::pair<IntegerValue, IntegerValue>>& new_profile) {
// The profile (and new profile) is a set of (time, capa_left) pairs, ordered
// by increasing time and capa_left.
profile.clear();
profile.emplace_back(kMinIntegerValue, capacity_max);
profile.emplace_back(kMaxIntegerValue, capacity_max);
IntegerValue start_of_previous_task = kMinIntegerValue;
for (int i = 0; i < heuristic_order.size(); i++) {
const IntegerValue event_size = sizes[heuristic_order[i]];
const IntegerValue event_demand = demands[heuristic_order[i]];
const IntegerValue event_start_min = 0;
const IntegerValue event_start_max = global_end_max - event_size;
const IntegerValue start_min =
std::max(event_start_min, start_of_previous_task);
// Iterate on the profile to find the step that contains start_min.
// Then push until we find a step with enough capacity.
int current = 0;
while (profile[current + 1].first <= start_min ||
profile[current].second < event_demand) {
++current;
}
const IntegerValue actual_start =
std::max(start_min, profile[current].first);
start_of_previous_task = actual_start;
// Compatible with the event.start_max ?
if (actual_start > event_start_max) return false;
const IntegerValue actual_end = actual_start + event_size;
// No need to update the profile on the last loop.
if (i == heuristic_order.size() - 1) break;
// Update the profile.
new_profile.clear();
new_profile.push_back(
{actual_start, profile[current].second - event_demand});
++current;
while (profile[current].first < actual_end) {
new_profile.push_back(
{profile[current].first, profile[current].second - event_demand});
++current;
}
if (profile[current].first > actual_end) {
new_profile.push_back(
{actual_end, new_profile.back().second + event_demand});
}
while (current < profile.size()) {
new_profile.push_back(profile[current]);
++current;
}
profile.swap(new_profile);
}
return true;
}
} // namespace
// We want to find the minimum set of values of `k` that would always find a
// conflict if there is a `k` for which it exists. In the literature it is
// often implied (but not stated) that it is sufficient to test the values of
// `k` that correspond to the size of an item. This is not true. To find the
// minimum set of values of `k` we look for all values of `k` that are
// "extreme": ie., the rounding on the division truncates the most (or the
// least) amount, depending on the sign it appears in the formula.
//
// To find these extreme values, we look for all local minima of the energy
// slack after applying the DFF (we multiply by `k` for convenience):
// k * f_k(H) * W - sum_i k * f_k(h_i) * w_i
// If this value ever becomes negative for a value of `k`, it must happen in a
// local minimum. Then we use the fact that
// k * floor(x / k) = x - x % k
// and that x%k has a local minimum when k=x/i and a local maximum when k=1+x/i
// for every integer i. The final finer point in the calculation is
// realizing that if
// sum_{i, h_i > H/2} w_i > W
// then you have more "large" objects than it fits in the box, and you will
// have a conflict using the DFF f_0 for l=H/2. So we can safely ignore this
// case for the more expensive DFF f_2 calculation.
void OrthogonalPackingInfeasibilityDetector::GetAllCandidatesForKForDff2(
absl::Span<const IntegerValue> sizes, IntegerValue bb_size,
IntegerValue sqrt_bb_size, Bitset64<IntegerValue>& candidates) {
// x_bb_size is less than 65536, so this fits in only 4kib.
candidates.ClearAndResize(bb_size / 2 + 2);
// `sqrt_bb_size` is lower than 256.
for (IntegerValue i = 2; i <= sqrt_bb_size; i++) {
candidates.Set(i);
}
for (int i = 1; i <= sqrt_bb_size; i++) {
const QuickSmallDivision div(i);
if (i > 1) {
candidates.Set(div.DivideByDivisor(bb_size.value()));
}
for (int k = 0; k < sizes.size(); k++) {
IntegerValue size = sizes[k];
if (2 * size > bb_size && size < bb_size) {
candidates.Set(div.DivideByDivisor(bb_size.value() - size.value() + 1));
} else if (2 * size < bb_size) {
candidates.Set(div.DivideByDivisor(size.value()));
}
}
}
// Remove some bogus candidates added by the logic above.
candidates.Clear(0);
candidates.Clear(1);
// Apply the nice result described on [1]: if we are testing the DFF
// f_2^k(f_0^l(x)) for all values of `l`, the only values of `k` greater than
// C/4 we need to test are {C/4+1, C/3+1}.
//
// In the same reference there is a proof that this way of composing f_0 and
// f_2 cover all possible ways of composing the two functions, including
// composing several times each.
//
// [1] F. Clautiaux, PhD thesis, hal/tel-00749411.
candidates.Resize(bb_size / 4 + 1); // Erase all >= C/4
candidates.Resize(bb_size / 3 + 2); // Make room for the two special values
candidates.Set(bb_size / 4 + 1);
if (bb_size > 3) {
candidates.Set(bb_size / 3 + 1);
}
}
// Check for conflict all combinations of the two Dual Feasible Functions f_0
// (see documentation for GetDffConflict()) and f_2 (see documentation for
// RoundingDualFeasibleFunction). More precisely, check whether there exist `l`
// and `k` so that
//
// sum_i f_2^k(f_0^l(sizes_x[i])) * sizes_y[i] > f_2^k(f_0^l(x_bb_size)) *
// y_bb_size
//
// The function returns the smallest subset of items enough to make the
// inequality above true or an empty vector if impossible.
OrthogonalPackingResult
OrthogonalPackingInfeasibilityDetector::CheckFeasibilityWithDualFunction2(
absl::Span<const IntegerValue> sizes_x,
absl::Span<const IntegerValue> sizes_y,
absl::Span<const int> index_by_decreasing_x_size, IntegerValue x_bb_size,
IntegerValue y_bb_size, int max_number_of_parameters_to_check) {
if (x_bb_size == 1) {
return OrthogonalPackingResult();
}
std::vector<IntegerValue> sizes_x_rescaled;
if (x_bb_size >= std::numeric_limits<uint16_t>::max()) {
// To do fast division we want our sizes to fit in a uint16_t. The simplest
// way of doing that is to just first apply this DFF with the right
// power-of-two value of the parameter.
const int log2_k =
absl::bit_width(static_cast<uint64_t>(x_bb_size.value() + 1)) - 16 + 1;
const RoundingDualFeasibleFunctionPowerOfTwo dff(x_bb_size, log2_k);
sizes_x_rescaled.resize(sizes_x.size());
for (int i = 0; i < sizes_x.size(); i++) {
sizes_x_rescaled[i] = dff(sizes_x[i]);
}
x_bb_size = dff(x_bb_size);
CHECK_LT(x_bb_size, std::numeric_limits<uint16_t>::max());
sizes_x = sizes_x_rescaled;
}
Bitset64<IntegerValue> candidates;
const IntegerValue sqrt_bb_size = FloorSquareRoot(x_bb_size.value());
int num_items = sizes_x.size();
const IntegerValue max_possible_number_of_parameters =
std::min(x_bb_size / 4 + 1, sqrt_bb_size * num_items);
if (5ull * max_number_of_parameters_to_check <
max_possible_number_of_parameters) {
// There are many more possible values than what we want to sample. It is
// not worth to pay the price of computing all optimal values to drop most
// of them, so let's just pick it randomly.
candidates.Resize(x_bb_size / 4 + 1);
int num_candidates = 0;
while (num_candidates < max_number_of_parameters_to_check) {
const IntegerValue pick =
absl::Uniform(random_, 1, x_bb_size.value() / 4);
if (!candidates.IsSet(pick)) {
candidates.Set(pick);
num_candidates++;
}
}
} else {
GetAllCandidatesForKForDff2(sizes_x, x_bb_size, sqrt_bb_size, candidates);
if (max_number_of_parameters_to_check < max_possible_number_of_parameters) {
// We might have produced too many candidates. Let's count them and if it
// is the case, sample them.
int count = 0;
for (auto it = candidates.begin(); it != candidates.end(); ++it) {
count++;
}
if (count > max_number_of_parameters_to_check) {
std::vector<IntegerValue> sampled_candidates(
max_number_of_parameters_to_check);
std::sample(candidates.begin(), candidates.end(),
sampled_candidates.begin(),
max_number_of_parameters_to_check, random_);
candidates.ClearAll();
for (const IntegerValue k : sampled_candidates) {
candidates.Set(k);
}
}
}
}
OrthogonalPackingResult best_result;
// Finally run our small loop to look for the conflict!
std::vector<IntegerValue> modified_sizes(num_items);
for (const IntegerValue k : candidates) {
const RoundingDualFeasibleFunction dff(x_bb_size, k);
IntegerValue energy = 0;
for (int i = 0; i < num_items; i++) {
modified_sizes[i] = dff(sizes_x[i]);
energy += modified_sizes[i] * sizes_y[i];
}
const IntegerValue modified_x_bb_size = dff(x_bb_size);
IntegerValue dff0_k;
auto dff0_res =
GetDffConflict(sizes_x, sizes_y, index_by_decreasing_x_size,
modified_sizes, modified_x_bb_size, x_bb_size, energy,
modified_x_bb_size * y_bb_size, &dff0_k);
if (dff0_res.result_ != OrthogonalPackingResult::Status::INFEASIBLE) {
continue;
}
DFFComposedF2F0 composed_dff(x_bb_size, dff0_k, k);
dff0_res.conflict_type_ = OrthogonalPackingResult::ConflictType::DFF_F2;
for (auto& item : dff0_res.items_participating_on_conflict_) {
item.size_x =
composed_dff.LowestInverse(composed_dff(sizes_x[item.index]));
// The new size should contribute by the same amount to the energy and
// correspond to smaller items.
DCHECK_EQ(composed_dff(item.size_x), composed_dff(sizes_x[item.index]));
DCHECK_LE(item.size_x, sizes_x[item.index]);
item.size_y = sizes_y[item.index];
}
if (dff0_res.IsBetterThan(best_result)) {
best_result = dff0_res;
}
}
return best_result;
}
bool OrthogonalPackingInfeasibilityDetector::RelaxConflictWithBruteForce(
OrthogonalPackingResult& result,
std::pair<IntegerValue, IntegerValue> bounding_box_size,
int brute_force_threshold) {
const int num_items_originally =
result.items_participating_on_conflict_.size();
if (num_items_originally > 2 * brute_force_threshold) {
// Don't even try on problems too big.
return false;
}
std::vector<IntegerValue> sizes_x;
std::vector<IntegerValue> sizes_y;
std::vector<int> indexes;
std::vector<bool> to_be_removed(num_items_originally, false);
sizes_x.reserve(num_items_originally - 1);
sizes_y.reserve(num_items_originally - 1);
for (int i = 0; i < num_items_originally; i++) {
sizes_x.clear();
sizes_y.clear();
// Look for a conflict using all non-removed items but the i-th one.
for (int j = 0; j < num_items_originally; j++) {
if (i == j || to_be_removed[j]) {
continue;
}
sizes_x.push_back(result.items_participating_on_conflict_[j].size_x);
sizes_y.push_back(result.items_participating_on_conflict_[j].size_y);
}
const auto solution = BruteForceOrthogonalPacking(
sizes_x, sizes_y, bounding_box_size, brute_force_threshold);
if (solution.status == BruteForceResult::Status::kNoSolutionExists) {
// We still have a conflict if we remove the i-th item!
to_be_removed[i] = true;
}
}
if (!std::any_of(to_be_removed.begin(), to_be_removed.end(),
[](bool b) { return b; })) {
return false;
}
OrthogonalPackingResult original = result;
result.slack_ = 0;
result.conflict_type_ = OrthogonalPackingResult::ConflictType::BRUTE_FORCE;
result.result_ = OrthogonalPackingResult::Status::INFEASIBLE;
result.items_participating_on_conflict_.clear();
for (int i = 0; i < num_items_originally; i++) {
if (to_be_removed[i]) {
continue;
}
result.items_participating_on_conflict_.push_back(
original.items_participating_on_conflict_[i]);
}
return true;
}
OrthogonalPackingResult
OrthogonalPackingInfeasibilityDetector::TestFeasibilityImpl(
absl::Span<const IntegerValue> sizes_x,
absl::Span<const IntegerValue> sizes_y,
std::pair<IntegerValue, IntegerValue> bounding_box_size,
const OrthogonalPackingOptions& options) {
using ConflictType = OrthogonalPackingResult::ConflictType;
const int num_items = sizes_x.size();
DCHECK_EQ(num_items, sizes_y.size());
const IntegerValue bb_area =
bounding_box_size.first * bounding_box_size.second;
IntegerValue total_energy = 0;
auto make_item = [sizes_x, sizes_y](int i) {
return OrthogonalPackingResult::Item{
.index = i, .size_x = sizes_x[i], .size_y = sizes_y[i]};
};
index_by_decreasing_x_size_.resize(num_items);
index_by_decreasing_y_size_.resize(num_items);
for (int i = 0; i < num_items; i++) {
total_energy += sizes_x[i] * sizes_y[i];
index_by_decreasing_x_size_[i] = i;
index_by_decreasing_y_size_[i] = i;
if (sizes_x[i] > bounding_box_size.first ||
sizes_y[i] > bounding_box_size.second) {
OrthogonalPackingResult result(
OrthogonalPackingResult::Status::INFEASIBLE);
result.conflict_type_ = ConflictType::TRIVIAL;
result.items_participating_on_conflict_ = {make_item(i)};
return result;
}
}
if (num_items <= 1) {
return OrthogonalPackingResult(OrthogonalPackingResult::Status::FEASIBLE);
}
std::sort(index_by_decreasing_x_size_.begin(),
index_by_decreasing_x_size_.end(),
[&sizes_x, &sizes_y](int a, int b) {
// Break ties with y-size
return std::tie(sizes_x[a], sizes_y[a]) >
std::tie(sizes_x[b], sizes_y[b]);
});
std::sort(index_by_decreasing_y_size_.begin(),
index_by_decreasing_y_size_.end(),
[&sizes_y, &sizes_x](int a, int b) {
return std::tie(sizes_y[a], sizes_x[a]) >
std::tie(sizes_y[b], sizes_x[b]);
});
// First look for pairwise incompatible pairs.
if (options.use_pairwise) {
if (auto pair = FindPairwiseConflict(sizes_x, sizes_y, bounding_box_size,
index_by_decreasing_x_size_,
index_by_decreasing_y_size_);
pair.has_value()) {
OrthogonalPackingResult result(
OrthogonalPackingResult::Status::INFEASIBLE);
result.conflict_type_ = ConflictType::PAIRWISE;
result.items_participating_on_conflict_ = {
make_item(pair.value().first), make_item(pair.value().second)};
return result;
}
if (num_items == 2) {
return OrthogonalPackingResult(OrthogonalPackingResult::Status::FEASIBLE);
}
}
OrthogonalPackingResult result(OrthogonalPackingResult::Status::UNKNOWN);
if (total_energy > bb_area) {
result.conflict_type_ = ConflictType::TRIVIAL;
result.result_ = OrthogonalPackingResult::Status::INFEASIBLE;
std::vector<std::pair<int, IntegerValue>> index_to_energy;
index_to_energy.reserve(num_items);
for (int i = 0; i < num_items; i++) {
index_to_energy.push_back({i, sizes_x[i] * sizes_y[i]});
}
std::sort(index_to_energy.begin(), index_to_energy.end(),
[](const std::pair<int, IntegerValue>& a,
const std::pair<int, IntegerValue>& b) {
return a.second > b.second;
});
IntegerValue recomputed_energy = 0;
for (int i = 0; i < index_to_energy.size(); i++) {
recomputed_energy += index_to_energy[i].second;
if (recomputed_energy > bb_area) {
result.items_participating_on_conflict_.resize(i + 1);
for (int j = 0; j <= i; j++) {
result.items_participating_on_conflict_[j] =
make_item(index_to_energy[j].first);
}
result.slack_ = recomputed_energy - bb_area - 1;
break;
}
}
}
const int minimum_conflict_size = options.use_pairwise ? 3 : 2;
if (result.items_participating_on_conflict_.size() == minimum_conflict_size) {
return result;
}
if (options.use_dff_f0) {
// If there is no pairwise incompatible pairs, this DFF cannot find a
// conflict by enlarging a item on both x and y directions: this would
// create an item as long as the whole box and another item as high as the
// whole box, which is obviously incompatible, and this incompatibility
// would be present already before enlarging the items since it is a DFF. So
// it is enough to test making items wide or high, but no need to try both.
IntegerValue best_k;
auto conflict =
GetDffConflict(sizes_x, sizes_y, index_by_decreasing_x_size_, sizes_x,
bounding_box_size.first, bounding_box_size.first,
total_energy, bb_area, &best_k);
if (conflict.IsBetterThan(result)) {
result = conflict;
}
conflict =
GetDffConflict(sizes_y, sizes_x, index_by_decreasing_y_size_, sizes_y,
bounding_box_size.second, bounding_box_size.second,
total_energy, bb_area, &best_k);
for (auto& item : conflict.items_participating_on_conflict_) {
std::swap(item.size_x, item.size_y);
}
if (conflict.IsBetterThan(result)) {
result = conflict;
}
}
if (result.items_participating_on_conflict_.size() == minimum_conflict_size) {
return result;
}
bool found_scheduling_solution = false;
if (options.use_dff_f2) {
// Checking for conflicts using f_2 is expensive, so first try a quick
// algorithm to check if there is no conflict to be found. See the comments
// on top of FindHeuristicSchedulingSolution().
if (FindHeuristicSchedulingSolution(
sizes_x, sizes_y, index_by_decreasing_x_size_,
bounding_box_size.first, bounding_box_size.second,
scheduling_profile_, new_scheduling_profile_) ||
FindHeuristicSchedulingSolution(
sizes_y, sizes_x, index_by_decreasing_y_size_,
bounding_box_size.second, bounding_box_size.first,
scheduling_profile_, new_scheduling_profile_)) {
num_scheduling_possible_++;
CHECK(result.result_ != OrthogonalPackingResult::Status::INFEASIBLE);
found_scheduling_solution = true;
}
}
if (!found_scheduling_solution && options.use_dff_f2) {
// We only check for conflicts applying this DFF on heights and widths, but
// not on both, which would be too expensive if done naively.
auto conflict = CheckFeasibilityWithDualFunction2(
sizes_x, sizes_y, index_by_decreasing_x_size_, bounding_box_size.first,
bounding_box_size.second,
options.dff2_max_number_of_parameters_to_check);
if (conflict.IsBetterThan(result)) {
result = conflict;
}
if (result.items_participating_on_conflict_.size() ==
minimum_conflict_size) {
return result;
}
conflict = CheckFeasibilityWithDualFunction2(
sizes_y, sizes_x, index_by_decreasing_y_size_, bounding_box_size.second,
bounding_box_size.first,
options.dff2_max_number_of_parameters_to_check);
for (auto& item : conflict.items_participating_on_conflict_) {
std::swap(item.size_x, item.size_y);
}
if (conflict.IsBetterThan(result)) {
result = conflict;
}
}
if (result.result_ == OrthogonalPackingResult::Status::UNKNOWN) {
auto solution = BruteForceOrthogonalPacking(
sizes_x, sizes_y, bounding_box_size, options.brute_force_threshold);
num_brute_force_calls_ +=
(solution.status != BruteForceResult::Status::kTooBig);
if (solution.status == BruteForceResult::Status::kNoSolutionExists) {
result.conflict_type_ = ConflictType::BRUTE_FORCE;
result.result_ = OrthogonalPackingResult::Status::INFEASIBLE;
result.items_participating_on_conflict_.resize(num_items);
for (int i = 0; i < num_items; i++) {
result.items_participating_on_conflict_[i] = make_item(i);
}
} else if (solution.status == BruteForceResult::Status::kFoundSolution) {
result.result_ = OrthogonalPackingResult::Status::FEASIBLE;
}
}
if (result.result_ == OrthogonalPackingResult::Status::INFEASIBLE) {
num_brute_force_relaxation_ += RelaxConflictWithBruteForce(
result, bounding_box_size, options.brute_force_threshold);
}
return result;
}
OrthogonalPackingResult OrthogonalPackingInfeasibilityDetector::TestFeasibility(
absl::Span<const IntegerValue> sizes_x,
absl::Span<const IntegerValue> sizes_y,
std::pair<IntegerValue, IntegerValue> bounding_box_size,
const OrthogonalPackingOptions& options) {
using ConflictType = OrthogonalPackingResult::ConflictType;
num_calls_++;
OrthogonalPackingResult result =
TestFeasibilityImpl(sizes_x, sizes_y, bounding_box_size, options);
if (result.result_ == OrthogonalPackingResult::Status::INFEASIBLE) {
num_conflicts_++;
switch (result.conflict_type_) {
case ConflictType::DFF_F0:
num_conflicts_dff0_++;
break;
case ConflictType::DFF_F2:
num_conflicts_dff2_++;
break;
case ConflictType::PAIRWISE:
num_conflicts_two_items_++;
break;
case ConflictType::TRIVIAL:
// The total area of the items was larger than the area of the box.
num_trivial_conflicts_++;
break;
case ConflictType::BRUTE_FORCE:
num_brute_force_conflicts_++;
break;
case ConflictType::NO_CONFLICT:
LOG(FATAL) << "Should never happen";
break;
}
}
return result;
}
bool OrthogonalPackingResult::TryUseSlackToReduceItemSize(
int i, Coord coord, IntegerValue lower_bound) {
Item& item = items_participating_on_conflict_[i];
IntegerValue& size = coord == Coord::kCoordX ? item.size_x : item.size_y;
const IntegerValue orthogonal_size =
coord == Coord::kCoordX ? item.size_y : item.size_x;
if (size <= lower_bound || orthogonal_size > slack_) {
return false;
}
const IntegerValue new_size =
std::max(lower_bound, size - slack_ / orthogonal_size);
slack_ -= (size - new_size) * orthogonal_size;
DCHECK_NE(size, new_size);
DCHECK_GE(slack_, 0);
size = new_size;
return true;
}
} // namespace sat
} // namespace operations_research