-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathsharder.cc
337 lines (304 loc) · 11.9 KB
/
sharder.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "ortools/pdlp/sharder.h"
#include <algorithm>
#include <cmath>
#include <cstdint>
#include <functional>
#include <vector>
#include "Eigen/Core"
#include "Eigen/SparseCore"
#include "absl/log/check.h"
#include "absl/synchronization/blocking_counter.h"
#include "absl/time/time.h"
#include "ortools/base/logging.h"
#include "ortools/base/mathutil.h"
#include "ortools/base/threadpool.h"
#include "ortools/base/timer.h"
namespace operations_research::pdlp {
using ::Eigen::VectorXd;
Sharder::Sharder(const int64_t num_elements, const int num_shards,
ThreadPool* const thread_pool,
const std::function<int64_t(int64_t)>& element_mass)
: thread_pool_(thread_pool) {
CHECK_GE(num_elements, 0);
if (num_elements == 0) {
shard_starts_.push_back(0);
return;
}
CHECK_GE(num_shards, 1);
shard_starts_.reserve(
std::min(static_cast<int64_t>(num_shards), num_elements) + 1);
shard_masses_.reserve(
std::min(static_cast<int64_t>(num_shards), num_elements));
int64_t overall_mass = 0;
for (int64_t elem = 0; elem < num_elements; ++elem) {
overall_mass += element_mass(elem);
}
shard_starts_.push_back(0);
int64_t this_shard_mass = element_mass(0);
for (int64_t elem = 1; elem < num_elements; ++elem) {
int64_t this_elem_mass = element_mass(elem);
if (this_shard_mass + (this_elem_mass / 2) >= overall_mass / num_shards) {
// `elem` starts a new shard.
shard_masses_.push_back(this_shard_mass);
shard_starts_.push_back(elem);
this_shard_mass = this_elem_mass;
} else {
this_shard_mass += this_elem_mass;
}
}
shard_starts_.push_back(num_elements);
shard_masses_.push_back(this_shard_mass);
CHECK_EQ(NumShards(), shard_masses_.size());
}
Sharder::Sharder(const int64_t num_elements, const int num_shards,
ThreadPool* const thread_pool)
: thread_pool_(thread_pool) {
CHECK_GE(num_elements, 0);
if (num_elements == 0) {
shard_starts_.push_back(0);
return;
}
CHECK_GE(num_shards, 1);
shard_starts_.reserve(std::min(int64_t{num_shards}, num_elements) + 1);
shard_masses_.reserve(std::min(int64_t{num_shards}, num_elements));
if (num_shards >= num_elements) {
for (int64_t element = 0; element < num_elements; ++element) {
shard_starts_.push_back(static_cast<int>(element));
shard_masses_.push_back(1);
}
} else {
for (int shard = 0; shard < num_shards; ++shard) {
const int64_t this_shard_start = ((num_elements * shard) / num_shards);
const int64_t next_shard_start =
((num_elements * (shard + 1)) / num_shards);
if (next_shard_start - this_shard_start > 0) {
shard_starts_.push_back(this_shard_start);
shard_masses_.push_back(next_shard_start - this_shard_start);
}
}
}
shard_starts_.push_back(num_elements);
CHECK_EQ(NumShards(), shard_masses_.size());
}
Sharder::Sharder(const Sharder& other_sharder, const int64_t num_elements)
// The `std::max()` protects against `other_sharder.NumShards() == 0`, which
// will happen if `other_sharder` had `num_elements == 0`.
: Sharder(num_elements, std::max(1, other_sharder.NumShards()),
other_sharder.thread_pool_) {}
void Sharder::ParallelForEachShard(
const std::function<void(const Shard&)>& func) const {
if (thread_pool_) {
absl::BlockingCounter counter(NumShards());
VLOG(2) << "Starting ParallelForEachShard()";
for (int shard_num = 0; shard_num < NumShards(); ++shard_num) {
thread_pool_->Schedule([&, shard_num]() {
WallTimer timer;
if (VLOG_IS_ON(2)) {
timer.Start();
}
func(Shard(shard_num, this));
if (VLOG_IS_ON(2)) {
timer.Stop();
VLOG(2) << "Shard " << shard_num << " with " << ShardSize(shard_num)
<< " elements and " << ShardMass(shard_num)
<< " mass finished with "
<< ShardMass(shard_num) /
std::max(int64_t{1}, absl::ToInt64Microseconds(
timer.GetDuration()))
<< " mass/usec.";
}
counter.DecrementCount();
});
}
counter.Wait();
VLOG(2) << "Done ParallelForEachShard()";
} else {
for (int shard_num = 0; shard_num < NumShards(); ++shard_num) {
func(Shard(shard_num, this));
}
}
}
double Sharder::ParallelSumOverShards(
const std::function<double(const Shard&)>& func) const {
VectorXd local_sums(NumShards());
ParallelForEachShard([&](const Sharder::Shard& shard) {
local_sums[shard.Index()] = func(shard);
});
return local_sums.sum();
}
bool Sharder::ParallelTrueForAllShards(
const std::function<bool(const Shard&)>& func) const {
// Recall `std::vector<bool>` is not thread-safe.
std::vector<int> local_result(NumShards());
ParallelForEachShard([&](const Sharder::Shard& shard) {
local_result[shard.Index()] = static_cast<int>(func(shard));
});
return std::all_of(local_result.begin(), local_result.end(),
[](const int v) { return static_cast<bool>(v); });
}
VectorXd TransposedMatrixVectorProduct(
const Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>& matrix,
const VectorXd& vector, const Sharder& sharder) {
CHECK_EQ(vector.size(), matrix.rows());
VectorXd answer(matrix.cols());
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
// NOTE: For very sparse columns, assignment to `shard(answer)` incurs a
// measurable overhead compared to using a constructor
// (i.e. `VectorXd temp = ...`). It is not clear why this is the case, nor
// how to avoid it.
shard(answer) = shard(matrix).transpose() * vector;
});
return answer;
}
void SetZero(const Sharder& sharder, VectorXd& dest) {
dest.resize(sharder.NumElements());
sharder.ParallelForEachShard(
[&](const Sharder::Shard& shard) { shard(dest).setZero(); });
}
VectorXd ZeroVector(const Sharder& sharder) {
VectorXd result(sharder.NumElements());
SetZero(sharder, result);
return result;
}
VectorXd OnesVector(const Sharder& sharder) {
VectorXd result(sharder.NumElements());
sharder.ParallelForEachShard(
[&](const Sharder::Shard& shard) { shard(result).setOnes(); });
return result;
}
void AddScaledVector(const double scale, const VectorXd& increment,
const Sharder& sharder, VectorXd& dest) {
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
shard(dest) += scale * shard(increment);
});
}
void AssignVector(const VectorXd& vec, const Sharder& sharder, VectorXd& dest) {
dest.resize(vec.size());
sharder.ParallelForEachShard(
[&](const Sharder::Shard& shard) { shard(dest) = shard(vec); });
}
VectorXd CloneVector(const VectorXd& vec, const Sharder& sharder) {
VectorXd dest;
AssignVector(vec, sharder, dest);
return dest;
}
void CoefficientWiseProductInPlace(const VectorXd& scale,
const Sharder& sharder, VectorXd& dest) {
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
shard(dest) = shard(dest).cwiseProduct(shard(scale));
});
}
void CoefficientWiseQuotientInPlace(const VectorXd& scale,
const Sharder& sharder, VectorXd& dest) {
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
shard(dest) = shard(dest).cwiseQuotient(shard(scale));
});
}
double Dot(const VectorXd& v1, const VectorXd& v2, const Sharder& sharder) {
return sharder.ParallelSumOverShards(
[&](const Sharder::Shard& shard) { return shard(v1).dot(shard(v2)); });
}
double LInfNorm(const VectorXd& vector, const Sharder& sharder) {
VectorXd local_max(sharder.NumShards());
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
local_max[shard.Index()] = shard(vector).lpNorm<Eigen::Infinity>();
});
return local_max.lpNorm<Eigen::Infinity>();
}
double L1Norm(const VectorXd& vector, const Sharder& sharder) {
return sharder.ParallelSumOverShards(
[&](const Sharder::Shard& shard) { return shard(vector).lpNorm<1>(); });
}
double SquaredNorm(const VectorXd& vector, const Sharder& sharder) {
return sharder.ParallelSumOverShards(
[&](const Sharder::Shard& shard) { return shard(vector).squaredNorm(); });
}
double Norm(const VectorXd& vector, const Sharder& sharder) {
return std::sqrt(SquaredNorm(vector, sharder));
}
double SquaredDistance(const VectorXd& vector1, const VectorXd& vector2,
const Sharder& sharder) {
return sharder.ParallelSumOverShards([&](const Sharder::Shard& shard) {
return (shard(vector1) - shard(vector2)).squaredNorm();
});
}
double Distance(const VectorXd& vector1, const VectorXd& vector2,
const Sharder& sharder) {
return std::sqrt(SquaredDistance(vector1, vector2, sharder));
}
double ScaledLInfNorm(const VectorXd& vector, const VectorXd& scale,
const Sharder& sharder) {
VectorXd local_max(sharder.NumShards());
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
local_max[shard.Index()] =
shard(vector).cwiseProduct(shard(scale)).lpNorm<Eigen::Infinity>();
});
return local_max.lpNorm<Eigen::Infinity>();
}
double ScaledSquaredNorm(const VectorXd& vector, const VectorXd& scale,
const Sharder& sharder) {
return sharder.ParallelSumOverShards([&](const Sharder::Shard& shard) {
return shard(vector).cwiseProduct(shard(scale)).squaredNorm();
});
}
double ScaledNorm(const VectorXd& vector, const VectorXd& scale,
const Sharder& sharder) {
return std::sqrt(ScaledSquaredNorm(vector, scale, sharder));
}
VectorXd ScaledColLInfNorm(
const Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>& matrix,
const VectorXd& row_scaling_vec, const VectorXd& col_scaling_vec,
const Sharder& sharder) {
CHECK_EQ(matrix.cols(), col_scaling_vec.size());
CHECK_EQ(matrix.rows(), row_scaling_vec.size());
VectorXd answer(matrix.cols());
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
auto matrix_shard = shard(matrix);
auto col_scaling_shard = shard(col_scaling_vec);
for (int64_t col_num = 0; col_num < shard(matrix).outerSize(); ++col_num) {
double max = 0.0;
for (decltype(matrix_shard)::InnerIterator it(matrix_shard, col_num); it;
++it) {
max = std::max(max, std::abs(it.value() * row_scaling_vec[it.row()]));
}
shard(answer)[col_num] = max * std::abs(col_scaling_shard[col_num]);
}
});
return answer;
}
VectorXd ScaledColL2Norm(
const Eigen::SparseMatrix<double, Eigen::ColMajor, int64_t>& matrix,
const VectorXd& row_scaling_vec, const VectorXd& col_scaling_vec,
const Sharder& sharder) {
CHECK_EQ(matrix.cols(), col_scaling_vec.size());
CHECK_EQ(matrix.rows(), row_scaling_vec.size());
VectorXd answer(matrix.cols());
sharder.ParallelForEachShard([&](const Sharder::Shard& shard) {
auto matrix_shard = shard(matrix);
auto col_scaling_shard = shard(col_scaling_vec);
for (int64_t col_num = 0; col_num < shard(matrix).outerSize(); ++col_num) {
double sum_of_squares = 0.0;
for (decltype(matrix_shard)::InnerIterator it(matrix_shard, col_num); it;
++it) {
sum_of_squares +=
MathUtil::Square(it.value() * row_scaling_vec[it.row()]);
}
shard(answer)[col_num] =
std::sqrt(sum_of_squares) * std::abs(col_scaling_shard[col_num]);
}
});
return answer;
}
} // namespace operations_research::pdlp