-
Notifications
You must be signed in to change notification settings - Fork 2.2k
/
Copy pathdijkstra_undirected.cc
70 lines (62 loc) · 2.38 KB
/
dijkstra_undirected.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
// Copyright 2010-2024 Google LLC
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <iostream>
#include <utility>
#include <vector>
#include "absl/strings/str_join.h"
#include "ortools/base/init_google.h"
#include "ortools/graph/bounded_dijkstra.h"
namespace {
// An edge in an undirected graph, the order of the endpoints does not matter.
struct Edge {
int endpoint1 = 0;
int endpoint2 = 0;
int length = 0;
};
} // namespace
int main(int argc, char** argv) {
InitGoogle(argv[0], &argc, &argv, true);
// The input graph, encoded as a list of edges with distances.
std::vector<Edge> edges = {
{.endpoint1 = 0, .endpoint2 = 1, .length = 8},
{.endpoint1 = 0, .endpoint2 = 2, .length = 1},
{.endpoint1 = 1, .endpoint2 = 2, .length = 0},
{.endpoint1 = 1, .endpoint2 = 3, .length = 1},
{.endpoint1 = 1, .endpoint2 = 4, .length = 4},
{.endpoint1 = 2, .endpoint2 = 4, .length = 5},
{.endpoint1 = 3, .endpoint2 = 4, .length = 2},
};
// Transform the graph.
std::vector<int> tails;
std::vector<int> heads;
std::vector<int> lengths;
for (const Edge& edge : edges) {
// The "forward" directed edge
tails.push_back(edge.endpoint1);
heads.push_back(edge.endpoint2);
lengths.push_back(edge.length);
// The "backward" directed edge
tails.push_back(edge.endpoint2);
heads.push_back(edge.endpoint1);
lengths.push_back(edge.length);
}
// Solve the shortest path problem from 0 to 4.
std::pair<int, std::vector<int>> result =
operations_research::SimpleOneToOneShortestPath<int>(0, 4, tails, heads,
lengths);
// Print to length of the path and then the nodes in the path.
std::cout << "Shortest path length: " << result.first << std::endl;
std::cout << "Shortest path nodes: " << absl::StrJoin(result.second, ", ")
<< std::endl;
return 0;
}