-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain.py
264 lines (211 loc) · 8.24 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: disable=line-too-long
r"""Train a model to predict protein labels.
Example use:
python train.py --data_base_path=./testdata/ \
--label_vocab_path=./data/vocabs/EC.tsv \
--hparams_set=small_test_model \
--output_dir=/tmp/`date +'%s'`
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from absl import app
from absl import flags
from absl import logging
import pandas as pd
import hparams_sets
import protein_dataset
import protein_model
import utils
import tensorflow.compat.v1 as tf
flags.DEFINE_string(
'data_base_path', None,
'Directory path containing tfrecords named like "train", "dev" and "test"')
flags.DEFINE_string('label_vocab_path', None,
'Relative path (from this file) to csv file of labels.')
flags.DEFINE_string('output_dir', '/tmp/protein_model',
'Path to save checkpoints.')
flags.DEFINE_string('hparams_set', hparams_sets.small_test_model.__name__,
'Hyperparameters to use (see hparams_sets module).')
flags.DEFINE_enum(
'train_fold', protein_dataset.TRAIN_FOLD, protein_dataset.DATA_FOLD_VALUES,
'Fold to use for training data '
'(one of protein_dataset.DATA_FOLD_VALUES)')
flags.DEFINE_enum(
'eval_fold', protein_dataset.TEST_FOLD, protein_dataset.DATA_FOLD_VALUES,
'Fold to use for training data '
'(one of protein_dataset.DATA_FOLD_VALUES)')
FLAGS = flags.FLAGS
_VOCAB_ITEM_COLUMN_NAME = 'vocab_item'
_VOCAB_INDEX_COLUMN_NAME = 'vocab_index'
def _make_estimator(hparams, label_vocab, output_dir):
"""Create a tf.estimator.Estimator.
Args:
hparams: tf.contrib.training.HParams.
label_vocab: list of string.
output_dir: str. Path to save checkpoints.
Returns:
tf.estimator.Estimator.
"""
model_fn = protein_model.make_model_fn(
label_vocab=label_vocab, hparams=hparams)
run_config = tf.estimator.RunConfig(model_dir=output_dir)
estimator = tf.estimator.Estimator(
model_fn=model_fn,
params=hparams,
config=run_config,
)
return estimator
def get_serving_input_fn():
"""Create an input function for serving."""
def serving_input_fn():
"""Input function for serving."""
batched_one_hot_sequences = tf.placeholder(
tf.float32,
shape=[None, None, len(utils.AMINO_ACID_VOCABULARY)],
name='batched_one_hot_sequences_placeholder')
sequence_lengths = tf.placeholder(
tf.int32,
shape=[None],
name='sequence_length_placeholder',
)
receivers = {
protein_dataset.SEQUENCE_KEY: batched_one_hot_sequences,
protein_dataset.SEQUENCE_LENGTH_KEY: sequence_lengths
}
features = {
protein_dataset.SEQUENCE_KEY: batched_one_hot_sequences,
protein_dataset.SEQUENCE_LENGTH_KEY: sequence_lengths
}
input_receiver = tf.estimator.export.ServingInputReceiver(
features=features, receiver_tensors=receivers)
return input_receiver
return serving_input_fn
def _make_estimator_and_inputs(hparams, label_vocab, data_base_path, output_dir,
train_fold, eval_fold):
"""Makes Estimator and input_fn for train and eval.
Args:
hparams: tf.contrib.training.HParams.
label_vocab: list of string.
data_base_path: str. Directory path containing tfrecords named like "train",
"dev" and "test"
output_dir: str. Path to save checkpoints.
train_fold: fold to use for training data (one of
protein_dataset.DATA_FOLD_VALUES)
eval_fold: fold to use for training data (one of
protein_dataset.DATA_FOLD_VALUES)
Returns:
A tuple of estimator, train_spec and eval_spec
"""
estimator = _make_estimator(
hparams=hparams, label_vocab=label_vocab, output_dir=output_dir)
logging.info('Loading data from %s', data_base_path)
logging.info('Writing to directory %s', output_dir)
train_input_fn = protein_dataset.make_input_fn(
data_file_pattern=data_base_path,
batch_size=hparams.batch_size,
label_vocab=label_vocab,
train_dev_or_test=train_fold)
train_spec = tf.estimator.TrainSpec(
train_input_fn, max_steps=hparams.train_steps)
eval_input_fn = protein_dataset.make_input_fn(
data_file_pattern=data_base_path,
batch_size=hparams.batch_size,
label_vocab=label_vocab,
train_dev_or_test=eval_fold)
savedmodel_exporters = [
tf.estimator.LatestExporter(
name='saved_model',
serving_input_receiver_fn=get_serving_input_fn(),
exports_to_keep=1)
]
eval_spec = tf.estimator.EvalSpec(
input_fn=eval_input_fn,
throttle_secs=1,
exporters=savedmodel_exporters,
)
return estimator, train_spec, eval_spec
def get_hparams(hparams_set_name):
"""Retrieves a tf.contrib.training.HParams from the hparam_sets module.
Args:
hparams_set_name: name of a function in the hparams_sets module returning a
tf.contrib.training.HParams object.
Returns:
tf.contrib.training.HParams.
"""
return getattr(hparams_sets, hparams_set_name)()
def parse_label_vocab(label_vocab_path):
"""Returns np.array of strings (labels).
Args:
label_vocab_path: str. Path to tsv file containing columns
_VOCAB_ITEM_COLUMN_NAME and _VOCAB_INDEX_COLUMN_NAME. See
testdata/label_vocab.tsv for an example.
Returns:
np.array of str. Labels are sorted by values in column
_VOCAB_INDEX_COLUMN_NAME.
"""
with tf.gfile.GFile(label_vocab_path) as f:
label_df = pd.read_csv(f, sep='\t')
available_indexes = label_df[_VOCAB_INDEX_COLUMN_NAME].values
if set(available_indexes) != set(range(len(available_indexes))):
raise ValueError('Vocab indexes were not the consecutive integers between '
'0 (inclusive) and len(vocab) (exclusive). '
'Got {}.'.format(sorted(available_indexes)))
return label_df.sort_values(
[_VOCAB_INDEX_COLUMN_NAME])[_VOCAB_ITEM_COLUMN_NAME].values
def train(data_base_path, output_dir, label_vocab_path, hparams_set_name,
train_fold, eval_fold):
"""Constructs trains, and evaluates a model on the given input data.
Args:
data_base_path: str. Directory path containing tfrecords named like "train",
"dev" and "test"
output_dir: str. Path to save checkpoints.
label_vocab_path: str. Path to tsv file containing columns
_VOCAB_ITEM_COLUMN_NAME and _VOCAB_INDEX_COLUMN_NAME. See
testdata/label_vocab.tsv for an example.
hparams_set_name: name of a function in the hparams module which returns a
tf.contrib.training.HParams object.
train_fold: fold to use for training data (one of
protein_dataset.DATA_FOLD_VALUES)
eval_fold: fold to use for training data (one of
protein_dataset.DATA_FOLD_VALUES)
Returns:
A tuple of the evaluation metrics, and the exported objects from Estimator.
"""
hparams = get_hparams(hparams_set_name)
label_vocab = parse_label_vocab(label_vocab_path)
(estimator, train_spec, eval_spec) = _make_estimator_and_inputs(
hparams=hparams,
label_vocab=label_vocab,
data_base_path=data_base_path,
output_dir=output_dir,
train_fold=train_fold,
eval_fold=eval_fold)
return tf.estimator.train_and_evaluate(
estimator=estimator, train_spec=train_spec, eval_spec=eval_spec)
def main(_):
train(
data_base_path=FLAGS.data_base_path,
output_dir=FLAGS.output_dir,
label_vocab_path=FLAGS.label_vocab_path,
hparams_set_name=FLAGS.hparams_set,
train_fold=FLAGS.train_fold,
eval_fold=FLAGS.eval_fold)
if __name__ == '__main__':
FLAGS.alsologtostderr = True # Shows training output.
flags.mark_flags_as_required(['data_base_path', 'label_vocab_path'])
app.run(main)