-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathinference_test.py
267 lines (209 loc) · 9.32 KB
/
inference_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tests for module inference.py."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import gzip
from absl import flags
from absl.testing import absltest
from absl.testing import parameterized
import numpy as np
import pandas as pd
import scipy.sparse
import inference
import test_util
import utils
import tensorflow.compat.v1 as tf
FLAGS = flags.FLAGS
class _InferrerFixture(object):
"""A mock inferrer object.
See docstring for get_activations.
"""
activation_type = 'serving_default'
def __init__(self, activation_rank=1):
"""Constructs a mock inferrer with activation output of specified rank.
Args:
activation_rank: int. Use 1 for activations that have a single float per
sequence, 2. for a vector per sequence, etc.
"""
self._activation_rank = activation_rank
def get_variable(self, x):
if x == 'label_vocab:0':
return np.array(['LABEL1'])
else:
raise ValueError(
'Fixture does not have an implementation for this variable')
def get_activations(self, input_seqs):
"""Returns a np.array with contents that are the length of each seq.
The shape of the np.array is dictated by self._activation_rank - see
docstring of __init__ for more information.
Args:
input_seqs: list of string.
Returns:
np.array of rank self._activation_rank, where the entries are the length
of each input seq. See Inferrer.get_activations for more information
about what this class is mocking.
"""
dense = np.reshape([len(s) for s in input_seqs],
[-1] + [1] * (self._activation_rank - 1))
return np.array([scipy.sparse.coo_matrix(x) for x in dense])
class InGraphInferrerTest(tf.test.TestCase, parameterized.TestCase):
def testCanInfer(self):
graph = tf.Graph()
with graph.as_default():
sequences = tf.placeholder(shape=[None], dtype=tf.string)
output_tensor = inference.in_graph_inferrer(
sequences, test_util.savedmodel_path(),
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY)
input_seqs = [''.join(utils.FULL_RESIDUE_VOCAB), 'ACD']
with self.session(graph=graph) as sess:
sess.run(tf.global_variables_initializer())
sess.run(tf.tables_initializer())
result = sess.run(output_tensor, feed_dict={sequences: input_seqs})
self.assertLen(result, 2)
class InferenceLibTest(parameterized.TestCase, tf.test.TestCase):
def testBatchedInference(self):
inferrer = inference.Inferrer(test_util.savedmodel_path(), batch_size=5)
input_seq = 'AP'
for total_size in range(15):
full_list = [input_seq] * total_size
activations = inferrer.get_activations(full_list)
self.assertLen(full_list, activations.shape[0])
def testSortUnsortInference(self):
inferrer = inference.Inferrer(test_util.savedmodel_path(), batch_size=1)
input_seqs = ['AP', 'APP', 'AP']
# Sorting will move long sequence to the end.
activations = inferrer.get_activations(input_seqs)
# Make sure it gets moved back to the middle.
self.assertAllClose(activations[0].todense(), activations[2].todense())
self.assertNotAllClose(activations[0].todense(), activations[1].todense())
def testStringInput(self):
inferrer = inference.Inferrer(test_util.savedmodel_path())
# Simulate failure to use a list.
with self.assertRaisesRegex(
ValueError, '`list_of_seqs` should be convertible to a '
'numpy vector of strings. Got *'):
inferrer.get_activations('QP')
def testMemoizedInferrerLoading(self):
inferrer = inference.memoized_inferrer(
test_util.savedmodel_path(), memoize_inference_results=True)
memoized_inferrer = inference.memoized_inferrer(
test_util.savedmodel_path(), memoize_inference_results=True)
self.assertIs(inferrer, memoized_inferrer)
def testMemoizedInferenceResults(self):
inferrer = inference.Inferrer(
test_util.savedmodel_path(), memoize_inference_results=True)
activations = inferrer._get_activations_for_batch(('ADE',))
memoized_activations = inferrer._get_activations_for_batch(('ADE',))
self.assertIs(activations, memoized_activations)
def testGetVariable(self):
inferrer = inference.Inferrer(test_util.savedmodel_path())
output = inferrer.get_variable('conv1d/bias:0')
self.assertNotEmpty(output)
def test_predictions_for_df(self):
inferrer_fixture = _InferrerFixture()
input_seqs = ['AAAA', 'DDD', 'EE', 'W']
input_df = pd.DataFrame({
'sequence_name': input_seqs,
'sequence': input_seqs
})
actual_output_df = inference.predictions_for_df(input_df, inferrer_fixture)
self.assertEqual(actual_output_df['predictions'].values.tolist(),
[4, 3, 2, 1])
self.assertEqual(actual_output_df.sequence_name.values.tolist(), input_seqs)
def test_serialize_deserialize_inference_result(self):
input_accession = 'ACCESSION'
input_activations = np.array([1., 2., 3.])
serialized = inference.serialize_inference_result(input_accession,
input_activations)
deserialized_actual_accession, deserialized_actual_activations = inference.deserialize_inference_result(
serialized)
self.assertEqual(deserialized_actual_accession, input_accession)
np.testing.assert_array_equal(deserialized_actual_activations,
input_activations)
def test_parse_sharded_inference_results(self):
# Create input inference results.
input_accession_1 = 'ACCESSION_1'
input_activations_1 = np.array([1., 2., 3.])
input_accession_2 = 'ACCESSION_2'
input_activations_2 = np.array([4., 5., 6.])
input_accession_3 = 'ACCESSION_3'
input_activations_3 = np.array([7., 8., 9.])
# Create files and a directory containing those inference results.
shard_1_contents = inference.serialize_inference_result(
input_accession_1,
input_activations_1) + b'\n' + inference.serialize_inference_result(
input_accession_2, input_activations_2)
shard_2_contents = inference.serialize_inference_result(
input_accession_3, input_activations_3)
shard_dir = self.create_tempdir()
shard_1_filename = shard_dir.create_file('shard_1').full_path
shard_2_filename = shard_dir.create_file('shard_2').full_path
# Write contents to a gzipped file.
with tf.io.gfile.GFile(shard_1_filename, 'wb') as f:
with gzip.GzipFile(fileobj=f, mode='wb') as f_gz:
f_gz.write(shard_1_contents)
with tf.io.gfile.GFile(shard_2_filename, 'wb') as f:
with gzip.GzipFile(fileobj=f, mode='wb') as f_gz:
f_gz.write(shard_2_contents)
actual = inference.parse_all_shards(shard_dir.full_path).values
actual = sorted(actual, key=lambda x: x[0])
self.assertEqual(actual[0][0], input_accession_1)
self.assertEqual(actual[1][0], input_accession_2)
self.assertEqual(actual[2][0], input_accession_3)
np.testing.assert_array_equal(actual[0][1], input_activations_1)
np.testing.assert_array_equal(actual[1][1], input_activations_2)
np.testing.assert_array_equal(actual[2][1], input_activations_3)
@parameterized.named_parameters(
dict(
testcase_name='filters one sequence',
input_df=pd.DataFrame({
'sequence_name': ['seq1', 'seq2'],
'sequence': ['ACDE', 'WWWYYY']
}),
threshold=5.,
expected=pd.DataFrame({
'sequence_name': ['seq2'],
'confidence': [6.],
'predicted_label': ['LABEL1'],
})),
dict(
testcase_name='filters no sequences, but preserves input sequence_name ordering',
input_df=pd.DataFrame({
'sequence_name': ['seq2', 'seq1'],
'sequence': ['WWWYYY', 'ACDE']
}),
threshold=2.,
expected=pd.DataFrame({
# Note: doesn't sort by sequence_name.
'sequence_name': ['seq2', 'seq1'],
'confidence': [6., 4.],
'predicted_label': ['LABEL1', 'LABEL1'],
})),
)
def testGetPredsAboveThreshold(self, input_df, expected, threshold):
inferrer_list = [_InferrerFixture(activation_rank=2)]
# Assert that the first sequence was removed.
actual = inference.get_preds_at_or_above_threshold(input_df, inferrer_list,
threshold)
test_util.assert_dataframes_equal(self, actual, expected)
def testGetPredsAboveThresholdRaisesOnZeroThreshold(self):
inferrer_list = []
input_df = pd.DataFrame()
with self.assertRaisesRegex(ValueError, '0'):
inference.get_preds_at_or_above_threshold(input_df, inferrer_list, 0.)
if __name__ == '__main__':
absltest.main()