-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathbaseline_utils.py
365 lines (290 loc) · 11.9 KB
/
baseline_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python2, python3
"""Utilities for evaluating baseline implementations of function annotation."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import re
import typing
from typing import Any, Dict, FrozenSet, List, Set, Text
import numpy as np
import pandas as pd
import six
from six.moves import zip
import tensorflow.compat.v1 as tf
import tqdm
_BLAST_OUTPUT_COLUMNS = [
'query_id',
'subject_id',
'percent_seq_identity',
'alignment_length',
'n_mismatches',
'n_gap_opens',
'query_alignment_start',
'query_alignment_end',
'subject_alignment_start',
'subject_alignment_end',
'expected_value',
'bit_score',
]
_MERGE_COL_NAME = 'merge_col'
# e.g. >accession="A0A0PX123" labels="PF00001,PF00002"
# Notice optional fasta header character '>' at the beginning.
_SEQUENCE_HEADER_RE = re.compile(r'^>?accession="(\w+)"\tlabels="(.*)"')
# Format of query sequence field for interproscan.
_INTERPROSCAN_ACCESSION_REGEX = re.compile(r'accession="(\w+)"')
def _get_sequence_name_from_sequence_header(s):
"""Returns sequence name from fasta header.
Args:
s: Fasta header input string. Format of sequence headers is
>accession_"label1,label2". The initial '>' character is optional.
"""
return _SEQUENCE_HEADER_RE.findall(s)[0][0] # 0th match, 0th capture group.
def _get_labels_from_sequence_header(s):
r"""Returns labels from fasta header.
Args:
s: Fasta header input string. Format of sequence headers is
>accession_"label1,label2". The initial '>' character is optional.
"""
# 0th match, 1th capture group.
regex_match = _SEQUENCE_HEADER_RE.findall(s)[0][1]
if regex_match == '': # pylint: disable=g-explicit-bool-comparison
# If the regex match is the empty string, we just want an empty set, as
# there are no labels.
return set()
return set(six.ensure_str(regex_match).split(','))
class BlastResult(
typing.NamedTuple('BlastResult', (
('sequence_name', Text),
('closest_sequence', Text),
('predicted_label', Set[Text]),
('percent_seq_identity', float),
('e_value', float),
('bit_score', float),
))):
"""Result of parsing BLAST output."""
@staticmethod
def from_string(s, ground_truth_lookup):
"""Constructs a BlastResult from a line in blast tsv output."""
tab_split = six.ensure_str(s).split('\t')
query_sequence = six.ensure_str(tab_split[0]).split('"')[1]
closest_sequence = six.ensure_str(tab_split[1]).split('"')[1]
percent_seq_identity = float(tab_split[2])
e_value = float(tab_split[10])
bit_score = float(tab_split[11])
predicted_label = ground_truth_lookup[closest_sequence]
return BlastResult(
sequence_name=query_sequence,
closest_sequence=closest_sequence,
predicted_label=predicted_label,
percent_seq_identity=percent_seq_identity,
e_value=e_value,
bit_score=bit_score)
class InterproScanResult(
typing.NamedTuple('InterproScanResult', (('sequence_name', Text),
('predicted_label', Set[Text])))):
"""Result of parsing InterproScan output."""
@staticmethod
def from_string(s):
tab_split = six.ensure_str(s).rstrip('\n').split('\t')
if len(tab_split) < 14 or tab_split[13] == '': # pylint: disable=g-explicit-bool-comparison
go_labels = set()
else:
go_labels = set(six.ensure_str(tab_split[13]).split('|'))
return InterproScanResult(
sequence_name=_INTERPROSCAN_ACCESSION_REGEX.findall(tab_split[0])[0],
predicted_label=go_labels)
def load_ground_truth(filename):
"""Returns dataframe of ground truth from FASTA file.
Documentation on how to produce this FASTA file is available at
https://docs.google.com/document/d/1uB8J_a1cURIeVNqa5SOJRBBtimI1nOHbU1NbN43Xr0s
Args:
filename: str. Path to FASTA file. Fasta header input string. Format of
sequence headers is like >accession="A0A0PX123" labels="PF00001,PF00002"
Returns:
pd.DataFrame with columns sequence_name (str), sequence (str),
true_label(Set[str]).
"""
dict_for_making_df = {'sequence_name': [], 'true_label': [], 'sequence': []}
with tf.io.gfile.GFile(filename) as f:
for line in tqdm.tqdm(f, position=0):
line = six.ensure_str(line)
if line.startswith('>'):
dict_for_making_df['sequence_name'].append(
_get_sequence_name_from_sequence_header(line))
dict_for_making_df['true_label'].append(
_get_labels_from_sequence_header(line))
else:
dict_for_making_df['sequence'].append(line.rstrip())
all_test_seqs = pd.DataFrame(dict_for_making_df)
return all_test_seqs
def _set_predicted_labels_missing(row):
"""Adds empty set as predicted labels for a DataFrame row."""
if row[_MERGE_COL_NAME] == 'right_only':
return set()
else:
return row['predicted_labels']
def _fillna(df, column_name, value):
"""Replacement for df.fillna that works with non-indexable values.
https://github.com/pandas-dev/pandas/issues/21329
Args:
df: pd.DataFrame with column `column_name`.
column_name: str.
value: value to set when column's value is NaN.
"""
df[column_name] = [
(x if isinstance(x, (set, frozenset)) else value) for x in df[column_name]
]
def _blast_row_to_confidence_array(
row,
label_vocab,
label_to_vocab_index,
):
"""Returns a confidence array of preds (predicted labels get bit_score)."""
arr = np.zeros_like(label_vocab, np.float32)
indexes_to_update = np.array(
[label_to_vocab_index[l] for l in row.predicted_label], dtype=np.int32)
arr[indexes_to_update] = row.bit_score
return arr
def load_blast_output(filename, label_vocab,
training_data_ground_truth,
test_data_ground_truth):
"""Load a file containing tsv-separated blast output.
Args:
filename: str. Path to output of blast.
label_vocab: np.array of string (labels). Used to compute the output column
`predictions`.
training_data_ground_truth: pd.DataFrame. The output of `load_ground_truth`.
Used to compute predicted labels, by using the labels on the training data
for the best match, given by blast.
test_data_ground_truth: pd.DataFrame. The output of `load_ground_truth`.
Used to compute the true labels.
Returns:
pd.DataFrame with columns
sequence_name (str);
true_label (Set[str]);
predicted_label (Set[str]);
predictions (np.array of length len(label_vocab), filled with the bit score
of the closest match). A value of 0 is used for sequences with no blast
calls;
percent_seq_identity (float, between 0 and 100);
e_value (float, a measure of confidence. Lower is more confident.).
A value of NaN is used for missing blast calls;
bit_score (float, a measure of confidence. Higher is more confident.).
A value of 0 is used for sequences with no blast calls.
For more information on e-value and bit score, see
http://www.metagenomics.wiki/tools/blast/evalue
"""
training_data_ground_truth_lookup = dict(
list(
zip(training_data_ground_truth.sequence_name,
training_data_ground_truth.true_label)))
blast_output_namedtuples = []
with tf.io.gfile.GFile(filename) as f:
for line in tqdm.tqdm(f, position=0):
blast_output_namedtuples.append(
BlastResult.from_string(
line, training_data_ground_truth_lookup))
blast_output = pd.DataFrame.from_records(
blast_output_namedtuples, columns=BlastResult._fields)
# Add in ground truth to get all sequences (including those missed by BLAST).
blast_output = blast_output.merge(
test_data_ground_truth,
on='sequence_name',
how='right',
indicator=_MERGE_COL_NAME)
label_to_vocab_index = {l: i for i, l in enumerate(label_vocab)}
# For all sequences for which we don't have predictions, set the predictions
# to the empty set.
_fillna(blast_output, 'predicted_label', frozenset())
# A bit score of 0 is a "zero confidence" score.
blast_output['bit_score'].fillna(0., inplace=True)
blast_output['predictions'] = blast_output.apply(
axis='columns',
func=lambda row: _blast_row_to_confidence_array( # pylint: disable=g-long-lambda
row, label_vocab, label_to_vocab_index))
# Clean up output columns.
blast_output.drop(inplace=True, columns=[_MERGE_COL_NAME, 'sequence'])
return blast_output
def _pad_ec_label_with_hyphens(label):
"""E.g. Given 'EC:1', returns 'EC:1.-.-.-'."""
to_return = label
while to_return.count('.') != 3:
to_return += '.-'
return to_return
def limit_set_of_labels(df, acceptable_labels,
column_to_limit):
"""Limits the set of things in df[column_to_limit to acceptable_labels."""
working_df = df.copy()
working_df[column_to_limit] = working_df[column_to_limit].apply(
acceptable_labels.intersection)
return working_df
def limit_labels_for_label_normalizer(
label_normalizer,
acceptable_labels):
"""Limits keys and values in label_normalizer to acceptable labels."""
limited_label_normalizer = {}
for k, v in label_normalizer.items():
if k in acceptable_labels:
limited_label_normalizer[k] = sorted(
acceptable_labels.intersection(set(v)))
return limited_label_normalizer
def load_interproscan_output(
interproscan_output_filename,
test_data_ground_truth,
):
"""Loads tab-separated output from interproscan.
Args:
interproscan_output_filename: file path to tsv interproscan output.
test_data_ground_truth: pd.DataFrame. The output of `load_ground_truth`.
Used to compute the true labels.
Returns:
pd.DataFrame with output columns 'sequence_name' (Text), predicted_label
(frozenset).
"""
interproscan_output_namedtuples = []
with tf.io.gfile.GFile(interproscan_output_filename) as f:
for line in tqdm.tqdm(f, position=0):
interproscan_output_namedtuples.append(
InterproScanResult.from_string(line))
interproscan_output = pd.DataFrame.from_records(
interproscan_output_namedtuples, columns=InterproScanResult._fields)
collapsed_interproscan_output_dict = {
'sequence_name': [],
'predicted_label': []
}
# There is more than one output per accession because interproscan supports
# many analyses of each sequence, and so all the go labels need to be
# collapsed.
for grouping_key, group in tqdm.tqdm(
interproscan_output.groupby('sequence_name'), position=0):
collapsed_interproscan_output_dict['sequence_name'].append(grouping_key)
collapsed_interproscan_output_dict['predicted_label'].append(
frozenset().union(*group.predicted_label.values.tolist()))
collapsed_interproscan_output = pd.DataFrame(
collapsed_interproscan_output_dict)
# Add in ground truth to get all sequences (including those missed by BLAST).
interproscan_output = collapsed_interproscan_output.merge(
test_data_ground_truth,
on='sequence_name',
how='right',
indicator=_MERGE_COL_NAME)
# For all sequences for which we don't have predictions, set the predictions
# to the empty set.
_fillna(interproscan_output, 'predicted_label', frozenset())
# Clean up output columns.
interproscan_output.drop(inplace=True, columns=[_MERGE_COL_NAME, 'sequence'])
return interproscan_output