diff --git a/connectomics/volume/processor/contrast.py b/connectomics/volume/processor/contrast.py index fb9b8c1..4d81070 100644 --- a/connectomics/volume/processor/contrast.py +++ b/connectomics/volume/processor/contrast.py @@ -15,9 +15,9 @@ """Processors for contrast adjustment.""" from connectomics.common import geom_utils +from connectomics.volume import mask as mask_lib from connectomics.volume import subvolume from connectomics.volume import subvolume_processor - import numpy as np from scipy import ndimage import skimage.exposure @@ -26,17 +26,25 @@ class PlaneProcessor(subvolume_processor.SubvolumeProcessor): """Abstract base class for plane-wise Processors.""" - def __init__(self, plane='yx'): + def __init__( + self, plane='yx', mask_configs: str | mask_lib.MaskConfigs | None = None + ): """Constructor. Args: plane: 2-char string describing the plane within which to compute the transformation; one of: (yx, zy, zx) + mask_configs: Optional mask where positive values indicate regions of the + image that should not contribute to contrast estimation. """ super().__init__() assert len(set(plane)) == 2 assert not set(plane) - set('xyz') self._plane = plane + if mask_configs is not None and isinstance(mask_configs, str): + mask_configs = self._get_mask_configs(mask_configs) + + self._mask_configs = mask_configs def process_plane(self, image2d: np.ndarray): raise NotImplementedError() @@ -48,8 +56,14 @@ def process(self, subvol: subvolume.Subvolume) -> subvolume.SubvolumeOrMany: other = dims.index(list(set('xyz') - set(self._plane))[0]) plane = [dims.index(x) for x in self._plane] + mask = None + if self._mask_configs is not None: + mask = self._build_mask(self._mask_configs, box) + desired = [0, other, plane[0], plane[1]] transposed = np.ascontiguousarray(np.transpose(input_ndarray, desired)) + if mask is not None: + mask = np.ascontiguousarray(np.transpose(mask, np.array(desired[1:]) - 1)) output_dtype = self.output_type(input_ndarray.dtype) if output_dtype == input_ndarray.dtype: @@ -57,9 +71,27 @@ def process(self, subvol: subvolume.Subvolume) -> subvolume.SubvolumeOrMany: else: output = np.zeros_like(transposed, dtype=output_dtype) + rng = np.random.default_rng(42) for c in range(transposed.shape[0]): for z in range(transposed.shape[1]): - output[c, z, ...] = self.process_plane(transposed[c, z, ...]) + m = orig = None + inp = transposed[c, z, ...] + + # Fill masked areas with pixels randomly resampled from unmasked areas. + # The contrast normalization methods we use do not rely on the spatial + # structure of the image, just the local histogram. + if mask is not None: + inp = inp.copy() + m = mask[z, ...] + if np.any(m) and not np.all(m): + fill = rng.choice(inp[~m], size=np.sum(m), replace=True) + orig = inp[m] + inp[m] = fill + + output[c, z, ...] = self.process_plane(inp) + + if orig is not None: + output[c, z, ...][m] = orig output = np.transpose(output, np.argsort(desired)) return self.crop_box_and_data(box, output) @@ -77,7 +109,8 @@ def __init__( clip_limit=0.01, clip_min=None, clip_max=None, - invert=False + invert=False, + mask_configs: str | mask_lib.MaskConfigs | None = None, ): """Constructor. @@ -88,8 +121,10 @@ def __init__( clip_min: Minimum value to retain in the input to CLAHE. clip_max: Maximum value to retain in the input to CLAHE. invert: Whether to invert the CLAHE result. + mask_configs: Optional mask where positive values indicate regions of the + image that should not contribute to contrast estimation. """ - super(CLAHE, self).__init__(plane) + super(CLAHE, self).__init__(plane, mask_configs) self._kernel_size = kernel_size self._clip_limit = clip_limit self._invert = invert @@ -191,12 +226,8 @@ class VarianceOfLaplacian(SectionStd): crop_at_borders = False - def __init__( - self, plane='yx', block_radius=10, sigma=1.0, scale=64 - ): - super(VarianceOfLaplacian, self).__init__( - plane, block_radius - ) + def __init__(self, plane='yx', block_radius=10, sigma=1.0, scale=64): + super(VarianceOfLaplacian, self).__init__(plane, block_radius) self._sigma = sigma self._scale = scale