-
Notifications
You must be signed in to change notification settings - Fork 121
/
Copy pathcount_tokens.dart
172 lines (154 loc) · 5.79 KB
/
count_tokens.dart
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
// Copyright 2024 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
import 'dart:io';
import 'package:google_generative_ai/google_generative_ai.dart';
final apiKey = () {
final apiKey = Platform.environment['GEMINI_API_KEY'];
if (apiKey == null) {
stderr.writeln(r'No $GEMINI_API_KEY environment variable');
exit(1);
}
return apiKey;
}();
Future<void> tokensTextOnly() async {
// [START tokens_text_only]
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';
final tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
// [END tokens_text_only]
}
Future<void> tokensChat() async {
// [START tokens_chat]
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final chat = model.startChat(history: [
Content.text('Hi my name is Bob'),
Content.model([TextPart('Hi Bob!')])
]);
var tokenCount = await model.countTokens(chat.history);
print('Total tokens: ${tokenCount.totalTokens}');
final response = await chat.sendMessage(Content.text(
'In one sentence, explain how a computer works to a young child.'));
if (response.usageMetadata case final usage?) {
print('Prompt: ${usage.promptTokenCount}, '
'Candidates: ${usage.candidatesTokenCount}, '
'Total: ${usage.totalTokenCount}');
}
tokenCount = await model.countTokens(
[...chat.history, Content.text('What is the meaning of life?')]);
print('Total tokens: ${tokenCount.totalTokens}');
// [END tokens_chat]
}
Future<void> tokensMultimodalImageInline() async {
// [START tokens_multimodal_image_inline]
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
final model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
Future<DataPart> fileToPart(String mimeType, String path) async {
return DataPart(mimeType, await File(path).readAsBytes());
}
final prompt = 'Tell me about this image';
final image = await fileToPart('image/jpeg', 'resources/organ.jpg');
final content = Content.multi([TextPart(prompt), image]);
// An image's display size does not affet its token count.
// Optionally, you can call `countTokens` for the prompt and file separately.
final tokenCount = await model.countTokens([content]);
print('Total tokens: ${tokenCount.totalTokens}');
final response = await model.generateContent([content]);
if (response.usageMetadata case final usage?) {
print('Prompt: ${usage.promptTokenCount}, '
'Candidates: ${usage.candidatesTokenCount}, '
'Total: ${usage.totalTokenCount}');
}
// [END tokens_multimodal_image_inline]
}
Future<void> tokensSystemInstructions() async {
// [START tokens_system_instruction]
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final prompt = 'The quick brown fox jumps over the lazy dog.';
// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
systemInstruction: Content.system('You are a cat. Your name is Neko.'),
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
// [END tokens_system_instruction]
}
Future<void> tokensTools() async {
// [START tokens_tools]
// Make sure to include this import:
// import 'package:google_generative_ai/google_generative_ai.dart';
var model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
);
final prompt = 'I have 57 cats, each owns 44 mittens, '
'how many mittens is that in total?';
// The total token count includes everything sent in the `generateContent`
// request.
var tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
final binaryFunction = Schema.object(
properties: {
'a': Schema.number(nullable: false),
'b': Schema.number(nullable: false)
},
requiredProperties: ['a', 'b'],
);
model = GenerativeModel(
model: 'gemini-1.5-flash',
apiKey: apiKey,
tools: [
Tool(functionDeclarations: [
FunctionDeclaration('add', 'returns a + b', binaryFunction),
FunctionDeclaration('subtract', 'returns a - b', binaryFunction),
FunctionDeclaration('multipley', 'returns a * b', binaryFunction),
FunctionDeclaration('divide', 'returns a / b', binaryFunction)
])
],
);
tokenCount = await model.countTokens([Content.text(prompt)]);
print('Total tokens: ${tokenCount.totalTokens}');
// [END tokens_tools]
}
void main() async {
await tokensTextOnly();
await tokensChat();
await tokensMultimodalImageInline();
await tokensSystemInstructions();
await tokensTools();
}