This repository has been archived by the owner on Nov 9, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 157
/
Copy pathpose_engine.py
156 lines (132 loc) · 5.39 KB
/
pose_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
# Copyright 2019 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from pycoral.utils import edgetpu
from PIL import Image
from tflite_runtime.interpreter import load_delegate
from tflite_runtime.interpreter import Interpreter
import collections
import enum
import math
import numpy as np
import os
import platform
import sys
import time
#TODO: Adds support for window and MAC
EDGETPU_SHARED_LIB = 'libedgetpu.so.1'
POSENET_SHARED_LIB = os.path.join(
'posenet_lib', os.uname().machine, 'posenet_decoder.so')
class KeypointType(enum.IntEnum):
"""Pose kepoints."""
NOSE = 0
LEFT_EYE = 1
RIGHT_EYE = 2
LEFT_EAR = 3
RIGHT_EAR = 4
LEFT_SHOULDER = 5
RIGHT_SHOULDER = 6
LEFT_ELBOW = 7
RIGHT_ELBOW = 8
LEFT_WRIST = 9
RIGHT_WRIST = 10
LEFT_HIP = 11
RIGHT_HIP = 12
LEFT_KNEE = 13
RIGHT_KNEE = 14
LEFT_ANKLE = 15
RIGHT_ANKLE = 16
Point = collections.namedtuple('Point', ['x', 'y'])
Point.distance = lambda a, b: math.sqrt((a.x - b.x)**2 + (a.y - b.y)**2)
Point.distance = staticmethod(Point.distance)
Keypoint = collections.namedtuple('Keypoint', ['point', 'score'])
Pose = collections.namedtuple('Pose', ['keypoints', 'score'])
class PoseEngine():
"""Engine used for pose tasks."""
def __init__(self, model_path, mirror=False):
"""Creates a PoseEngine with given model.
Args:
model_path: String, path to TF-Lite Flatbuffer file.
mirror: Flip keypoints horizontally.
Raises:
ValueError: An error occurred when model output is invalid.
"""
edgetpu_delegate = load_delegate(EDGETPU_SHARED_LIB)
posenet_decoder_delegate = load_delegate(POSENET_SHARED_LIB)
self._interpreter = Interpreter(
model_path, experimental_delegates=[edgetpu_delegate, posenet_decoder_delegate])
self._interpreter.allocate_tensors()
self._mirror = mirror
self._input_tensor_shape = self.get_input_tensor_shape()
if (self._input_tensor_shape.size != 4 or
self._input_tensor_shape[3] != 3 or
self._input_tensor_shape[0] != 1):
raise ValueError(
('Image model should have input shape [1, height, width, 3]!'
' This model has {}.'.format(self._input_tensor_shape)))
_, self._input_height, self._input_width, self._input_depth = self.get_input_tensor_shape()
self._input_type = self._interpreter.get_input_details()[0]['dtype']
self._inf_time = 0
def run_inference(self, input_data):
"""Run inference using the zero copy feature from pycoral and returns inference time in ms.
"""
start = time.monotonic()
edgetpu.run_inference(self._interpreter, input_data)
self._inf_time = time.monotonic() - start
return (self._inf_time * 1000)
def DetectPosesInImage(self, img):
"""Detects poses in a given image.
For ideal results make sure the image fed to this function is close to the
expected input size - it is the caller's responsibility to resize the
image accordingly.
Args:
img: numpy array containing image
"""
input_details = self._interpreter.get_input_details()
image_width, image_height = img.size
resized_image = img.resize(
(self._input_width, self._input_height), Image.NEAREST)
input_data = np.expand_dims(resized_image, axis=0)
if self._input_type is np.float32:
# Floating point versions of posenet take image data in [-1,1] range.
input_data = np.float32(resized_image) / 128.0 - 1.0
else:
# Assuming to be uint8
input_data = np.asarray(resized_image)
self.run_inference(input_data.flatten())
return self.ParseOutput()
def get_input_tensor_shape(self):
"""Returns input tensor shape."""
return self._interpreter.get_input_details()[0]['shape']
def get_output_tensor(self, idx):
"""Returns output tensor view."""
return np.squeeze(self._interpreter.tensor(
self._interpreter.get_output_details()[idx]['index'])())
def ParseOutput(self):
"""Parses interpreter output tensors and returns decoded poses."""
keypoints = self.get_output_tensor(0)
keypoint_scores = self.get_output_tensor(1)
pose_scores = self.get_output_tensor(2)
num_poses = self.get_output_tensor(3)
poses = []
for i in range(int(num_poses)):
pose_score = pose_scores[i]
pose_keypoints = {}
for j, point in enumerate(keypoints[i]):
y, x = point
if self._mirror:
y = self._input_width - y
pose_keypoints[KeypointType(j)] = Keypoint(
Point(x, y), keypoint_scores[i, j])
poses.append(Pose(pose_keypoints, pose_score))
return poses, self._inf_time