diff --git a/examples/gno.land/p/moul/cow/gno.mod b/examples/gno.land/p/moul/cow/gno.mod new file mode 100644 index 00000000000..11076765a0f --- /dev/null +++ b/examples/gno.land/p/moul/cow/gno.mod @@ -0,0 +1 @@ +module gno.land/p/demo/avl/cow \ No newline at end of file diff --git a/examples/gno.land/p/moul/cow/node.gno b/examples/gno.land/p/moul/cow/node.gno new file mode 100644 index 00000000000..8a641e27f70 --- /dev/null +++ b/examples/gno.land/p/moul/cow/node.gno @@ -0,0 +1,487 @@ +package cow + +//---------------------------------------- +// Node + +// Node represents a node in an AVL tree. +type Node struct { + key string // key is the unique identifier for the node. + value interface{} // value is the data stored in the node. + height int8 // height is the height of the node in the tree. + size int // size is the number of nodes in the subtree rooted at this node. + leftNode *Node // leftNode is the left child of the node. + rightNode *Node // rightNode is the right child of the node. +} + +// NewNode creates a new node with the given key and value. +func NewNode(key string, value interface{}) *Node { + return &Node{ + key: key, + value: value, + height: 0, + size: 1, + } +} + +// Size returns the size of the subtree rooted at the node. +func (node *Node) Size() int { + if node == nil { + return 0 + } + return node.size +} + +// IsLeaf checks if the node is a leaf node (has no children). +func (node *Node) IsLeaf() bool { + return node.height == 0 +} + +// Key returns the key of the node. +func (node *Node) Key() string { + return node.key +} + +// Value returns the value of the node. +func (node *Node) Value() interface{} { + return node.value +} + +// _copy creates a copy of the node (excluding value). +func (node *Node) _copy() *Node { + if node.height == 0 { + panic("Why are you copying a value node?") + } + return &Node{ + key: node.key, + height: node.height, + size: node.size, + leftNode: node.leftNode, + rightNode: node.rightNode, + } +} + +// Has checks if a node with the given key exists in the subtree rooted at the node. +func (node *Node) Has(key string) (has bool) { + if node == nil { + return false + } + if node.key == key { + return true + } + if node.height == 0 { + return false + } + if key < node.key { + return node.getLeftNode().Has(key) + } + return node.getRightNode().Has(key) +} + +// Get searches for a node with the given key in the subtree rooted at the node +// and returns its index, value, and whether it exists. +func (node *Node) Get(key string) (index int, value interface{}, exists bool) { + if node == nil { + return 0, nil, false + } + + if node.height == 0 { + if node.key == key { + return 0, node.value, true + } + if node.key < key { + return 1, nil, false + } + return 0, nil, false + } + + if key < node.key { + return node.getLeftNode().Get(key) + } + + rightNode := node.getRightNode() + index, value, exists = rightNode.Get(key) + index += node.size - rightNode.size + return index, value, exists +} + +// GetByIndex retrieves the key-value pair of the node at the given index +// in the subtree rooted at the node. +func (node *Node) GetByIndex(index int) (key string, value interface{}) { + if node.height == 0 { + if index == 0 { + return node.key, node.value + } + panic("GetByIndex asked for invalid index") + } + // TODO: could improve this by storing the sizes + leftNode := node.getLeftNode() + if index < leftNode.size { + return leftNode.GetByIndex(index) + } + return node.getRightNode().GetByIndex(index - leftNode.size) +} + +// Set inserts a new node with the given key-value pair into the subtree rooted at the node, +// and returns the new root of the subtree and whether an existing node was updated. +// +// XXX consider a better way to do this... perhaps split Node from Node. +func (node *Node) Set(key string, value interface{}) (newSelf *Node, updated bool) { + if node == nil { + return NewNode(key, value), false + } + + if node.height == 0 { + return node.setLeaf(key, value) + } + + node = node._copy() + if key < node.key { + node.leftNode, updated = node.getLeftNode().Set(key, value) + } else { + node.rightNode, updated = node.getRightNode().Set(key, value) + } + + if updated { + return node, updated + } + + node.calcHeightAndSize() + return node.balance(), updated +} + +// setLeaf inserts a new leaf node with the given key-value pair into the subtree rooted at the node, +// and returns the new root of the subtree and whether an existing node was updated. +func (node *Node) setLeaf(key string, value interface{}) (newSelf *Node, updated bool) { + if key == node.key { + return NewNode(key, value), true + } + + if key < node.key { + return &Node{ + key: node.key, + height: 1, + size: 2, + leftNode: NewNode(key, value), + rightNode: node, + }, false + } + + return &Node{ + key: key, + height: 1, + size: 2, + leftNode: node, + rightNode: NewNode(key, value), + }, false +} + +// Remove deletes the node with the given key from the subtree rooted at the node. +// returns the new root of the subtree, the new leftmost leaf key (if changed), +// the removed value and the removal was successful. +func (node *Node) Remove(key string) ( + newNode *Node, newKey string, value interface{}, removed bool, +) { + if node == nil { + return nil, "", nil, false + } + if node.height == 0 { + if key == node.key { + return nil, "", node.value, true + } + return node, "", nil, false + } + if key < node.key { + var newLeftNode *Node + newLeftNode, newKey, value, removed = node.getLeftNode().Remove(key) + if !removed { + return node, "", value, false + } + if newLeftNode == nil { // left node held value, was removed + return node.rightNode, node.key, value, true + } + node = node._copy() + node.leftNode = newLeftNode + node.calcHeightAndSize() + node = node.balance() + return node, newKey, value, true + } + + var newRightNode *Node + newRightNode, newKey, value, removed = node.getRightNode().Remove(key) + if !removed { + return node, "", value, false + } + if newRightNode == nil { // right node held value, was removed + return node.leftNode, "", value, true + } + node = node._copy() + node.rightNode = newRightNode + if newKey != "" { + node.key = newKey + } + node.calcHeightAndSize() + node = node.balance() + return node, "", value, true +} + +// getLeftNode returns the left child of the node. +func (node *Node) getLeftNode() *Node { + return node.leftNode +} + +// getRightNode returns the right child of the node. +func (node *Node) getRightNode() *Node { + return node.rightNode +} + +// rotateRight performs a right rotation on the node and returns the new root. +// NOTE: overwrites node +// TODO: optimize balance & rotate +func (node *Node) rotateRight() *Node { + node = node._copy() + l := node.getLeftNode() + _l := l._copy() + + _lrCached := _l.rightNode + _l.rightNode = node + node.leftNode = _lrCached + + node.calcHeightAndSize() + _l.calcHeightAndSize() + + return _l +} + +// rotateLeft performs a left rotation on the node and returns the new root. +// NOTE: overwrites node +// TODO: optimize balance & rotate +func (node *Node) rotateLeft() *Node { + node = node._copy() + r := node.getRightNode() + _r := r._copy() + + _rlCached := _r.leftNode + _r.leftNode = node + node.rightNode = _rlCached + + node.calcHeightAndSize() + _r.calcHeightAndSize() + + return _r +} + +// calcHeightAndSize updates the height and size of the node based on its children. +// NOTE: mutates height and size +func (node *Node) calcHeightAndSize() { + node.height = maxInt8(node.getLeftNode().height, node.getRightNode().height) + 1 + node.size = node.getLeftNode().size + node.getRightNode().size +} + +// calcBalance calculates the balance factor of the node. +func (node *Node) calcBalance() int { + return int(node.getLeftNode().height) - int(node.getRightNode().height) +} + +// balance balances the subtree rooted at the node and returns the new root. +// NOTE: assumes that node can be modified +// TODO: optimize balance & rotate +func (node *Node) balance() (newSelf *Node) { + balance := node.calcBalance() + if balance >= -1 { + return node + } + if balance > 1 { + if node.getLeftNode().calcBalance() >= 0 { + // Left Left Case + return node.rotateRight() + } + // Left Right Case + left := node.getLeftNode() + node.leftNode = left.rotateLeft() + return node.rotateRight() + } + + if node.getRightNode().calcBalance() <= 0 { + // Right Right Case + return node.rotateLeft() + } + + // Right Left Case + right := node.getRightNode() + node.rightNode = right.rotateRight() + return node.rotateLeft() +} + +// Shortcut for TraverseInRange. +func (node *Node) Iterate(start, end string, cb func(*Node) bool) bool { + return node.TraverseInRange(start, end, true, true, cb) +} + +// Shortcut for TraverseInRange. +func (node *Node) ReverseIterate(start, end string, cb func(*Node) bool) bool { + return node.TraverseInRange(start, end, false, true, cb) +} + +// TraverseInRange traverses all nodes, including inner nodes. +// Start is inclusive and end is exclusive when ascending, +// Start and end are inclusive when descending. +// Empty start and empty end denote no start and no end. +// If leavesOnly is true, only visit leaf nodes. +// NOTE: To simulate an exclusive reverse traversal, +// just append 0x00 to start. +func (node *Node) TraverseInRange(start, end string, ascending bool, leavesOnly bool, cb func(*Node) bool) bool { + if node == nil { + return false + } + afterStart := (start == "" || start < node.key) + startOrAfter := (start == "" || start <= node.key) + beforeEnd := false + if ascending { + beforeEnd = (end == "" || node.key < end) + } else { + beforeEnd = (end == "" || node.key <= end) + } + + // Run callback per inner/leaf node. + stop := false + if (!node.IsLeaf() && !leavesOnly) || + (node.IsLeaf() && startOrAfter && beforeEnd) { + stop = cb(node) + if stop { + return stop + } + } + if node.IsLeaf() { + return stop + } + + if ascending { + // check lower nodes, then higher + if afterStart { + stop = node.getLeftNode().TraverseInRange(start, end, ascending, leavesOnly, cb) + } + if stop { + return stop + } + if beforeEnd { + stop = node.getRightNode().TraverseInRange(start, end, ascending, leavesOnly, cb) + } + } else { + // check the higher nodes first + if beforeEnd { + stop = node.getRightNode().TraverseInRange(start, end, ascending, leavesOnly, cb) + } + if stop { + return stop + } + if afterStart { + stop = node.getLeftNode().TraverseInRange(start, end, ascending, leavesOnly, cb) + } + } + + return stop +} + +// TraverseByOffset traverses all nodes, including inner nodes. +// A limit of math.MaxInt means no limit. +func (node *Node) TraverseByOffset(offset, limit int, descending bool, leavesOnly bool, cb func(*Node) bool) bool { + if node == nil { + return false + } + + // fast paths. these happen only if TraverseByOffset is called directly on a leaf. + if limit <= 0 || offset >= node.size { + return false + } + if node.IsLeaf() { + if offset > 0 { + return false + } + return cb(node) + } + + // go to the actual recursive function. + return node.traverseByOffset(offset, limit, descending, leavesOnly, cb) +} + +// TraverseByOffset traverses the subtree rooted at the node by offset and limit, +// in either ascending or descending order, and applies the callback function to each traversed node. +// If leavesOnly is true, only leaf nodes are visited. +func (node *Node) traverseByOffset(offset, limit int, descending bool, leavesOnly bool, cb func(*Node) bool) bool { + // caller guarantees: offset < node.size; limit > 0. + if !leavesOnly { + if cb(node) { + return true + } + } + first, second := node.getLeftNode(), node.getRightNode() + if descending { + first, second = second, first + } + if first.IsLeaf() { + // either run or skip, based on offset + if offset > 0 { + offset-- + } else { + cb(first) + limit-- + if limit <= 0 { + return false + } + } + } else { + // possible cases: + // 1 the offset given skips the first node entirely + // 2 the offset skips none or part of the first node, but the limit requires some of the second node. + // 3 the offset skips none or part of the first node, and the limit stops our search on the first node. + if offset >= first.size { + offset -= first.size // 1 + } else { + if first.traverseByOffset(offset, limit, descending, leavesOnly, cb) { + return true + } + // number of leaves which could actually be called from inside + delta := first.size - offset + offset = 0 + if delta >= limit { + return true // 3 + } + limit -= delta // 2 + } + } + + // because of the caller guarantees and the way we handle the first node, + // at this point we know that limit > 0 and there must be some values in + // this second node that we include. + + // => if the second node is a leaf, it has to be included. + if second.IsLeaf() { + return cb(second) + } + // => if it is not a leaf, it will still be enough to recursively call this + // function with the updated offset and limit + return second.traverseByOffset(offset, limit, descending, leavesOnly, cb) +} + +// Only used in testing... +func (node *Node) lmd() *Node { + if node.height == 0 { + return node + } + return node.getLeftNode().lmd() +} + +// Only used in testing... +func (node *Node) rmd() *Node { + if node.height == 0 { + return node + } + return node.getRightNode().rmd() +} + +func maxInt8(a, b int8) int8 { + if a > b { + return a + } + return b +} diff --git a/examples/gno.land/p/moul/cow/node_test.gno b/examples/gno.land/p/moul/cow/node_test.gno new file mode 100644 index 00000000000..be4471ec4eb --- /dev/null +++ b/examples/gno.land/p/moul/cow/node_test.gno @@ -0,0 +1,555 @@ +package cow + +import ( + "sort" + "strings" + "testing" +) + +func TestTraverseByOffset(t *testing.T) { + const testStrings = `Alfa +Alfred +Alpha +Alphabet +Beta +Beth +Book +Browser` + tt := []struct { + name string + desc bool + }{ + {"ascending", false}, + {"descending", true}, + } + + for _, tt := range tt { + t.Run(tt.name, func(t *testing.T) { + sl := strings.Split(testStrings, "\n") + + // sort a first time in the order opposite to how we'll be traversing + // the tree, to ensure that we are not just iterating through with + // insertion order. + sort.Strings(sl) + if !tt.desc { + reverseSlice(sl) + } + + r := NewNode(sl[0], nil) + for _, v := range sl[1:] { + r, _ = r.Set(v, nil) + } + + // then sort sl in the order we'll be traversing it, so that we can + // compare the result with sl. + reverseSlice(sl) + + var result []string + for i := 0; i < len(sl); i++ { + r.TraverseByOffset(i, 1, tt.desc, true, func(n *Node) bool { + result = append(result, n.Key()) + return false + }) + } + + if !slicesEqual(sl, result) { + t.Errorf("want %v got %v", sl, result) + } + + for l := 2; l <= len(sl); l++ { + // "slices" + for i := 0; i <= len(sl); i++ { + max := i + l + if max > len(sl) { + max = len(sl) + } + exp := sl[i:max] + actual := []string{} + + r.TraverseByOffset(i, l, tt.desc, true, func(tr *Node) bool { + actual = append(actual, tr.Key()) + return false + }) + if !slicesEqual(exp, actual) { + t.Errorf("want %v got %v", exp, actual) + } + } + } + }) + } +} + +func TestHas(t *testing.T) { + tests := []struct { + name string + input []string + hasKey string + expected bool + }{ + { + "has key in non-empty tree", + []string{"C", "A", "B", "E", "D"}, + "B", + true, + }, + { + "does not have key in non-empty tree", + []string{"C", "A", "B", "E", "D"}, + "F", + false, + }, + { + "has key in single-node tree", + []string{"A"}, + "A", + true, + }, + { + "does not have key in single-node tree", + []string{"A"}, + "B", + false, + }, + { + "does not have key in empty tree", + []string{}, + "A", + false, + }, + } + + for _, tt := range tests { + t.Run(tt.name, func(t *testing.T) { + var tree *Node + for _, key := range tt.input { + tree, _ = tree.Set(key, nil) + } + + result := tree.Has(tt.hasKey) + + if result != tt.expected { + t.Errorf("Expected %v, got %v", tt.expected, result) + } + }) + } +} + +func TestGet(t *testing.T) { + tests := []struct { + name string + input []string + getKey string + expectIdx int + expectVal interface{} + expectExists bool + }{ + { + "get existing key", + []string{"C", "A", "B", "E", "D"}, + "B", + 1, + nil, + true, + }, + { + "get non-existent key (smaller)", + []string{"C", "A", "B", "E", "D"}, + "@", + 0, + nil, + false, + }, + { + "get non-existent key (larger)", + []string{"C", "A", "B", "E", "D"}, + "F", + 5, + nil, + false, + }, + { + "get from empty tree", + []string{}, + "A", + 0, + nil, + false, + }, + } + + for _, tt := range tests { + t.Run(tt.name, func(t *testing.T) { + var tree *Node + for _, key := range tt.input { + tree, _ = tree.Set(key, nil) + } + + idx, val, exists := tree.Get(tt.getKey) + + if idx != tt.expectIdx { + t.Errorf("Expected index %d, got %d", tt.expectIdx, idx) + } + + if val != tt.expectVal { + t.Errorf("Expected value %v, got %v", tt.expectVal, val) + } + + if exists != tt.expectExists { + t.Errorf("Expected exists %t, got %t", tt.expectExists, exists) + } + }) + } +} + +func TestGetByIndex(t *testing.T) { + tests := []struct { + name string + input []string + idx int + expectKey string + expectVal interface{} + expectPanic bool + }{ + { + "get by valid index", + []string{"C", "A", "B", "E", "D"}, + 2, + "C", + nil, + false, + }, + { + "get by valid index (smallest)", + []string{"C", "A", "B", "E", "D"}, + 0, + "A", + nil, + false, + }, + { + "get by valid index (largest)", + []string{"C", "A", "B", "E", "D"}, + 4, + "E", + nil, + false, + }, + { + "get by invalid index (negative)", + []string{"C", "A", "B", "E", "D"}, + -1, + "", + nil, + true, + }, + { + "get by invalid index (out of range)", + []string{"C", "A", "B", "E", "D"}, + 5, + "", + nil, + true, + }, + } + + for _, tt := range tests { + t.Run(tt.name, func(t *testing.T) { + var tree *Node + for _, key := range tt.input { + tree, _ = tree.Set(key, nil) + } + + if tt.expectPanic { + defer func() { + if r := recover(); r == nil { + t.Errorf("Expected a panic but didn't get one") + } + }() + } + + key, val := tree.GetByIndex(tt.idx) + + if !tt.expectPanic { + if key != tt.expectKey { + t.Errorf("Expected key %s, got %s", tt.expectKey, key) + } + + if val != tt.expectVal { + t.Errorf("Expected value %v, got %v", tt.expectVal, val) + } + } + }) + } +} + +func TestRemove(t *testing.T) { + tests := []struct { + name string + input []string + removeKey string + expected []string + }{ + { + "remove leaf node", + []string{"C", "A", "B", "D"}, + "B", + []string{"A", "C", "D"}, + }, + { + "remove node with one child", + []string{"C", "A", "B", "D"}, + "A", + []string{"B", "C", "D"}, + }, + { + "remove node with two children", + []string{"C", "A", "B", "E", "D"}, + "C", + []string{"A", "B", "D", "E"}, + }, + { + "remove root node", + []string{"C", "A", "B", "E", "D"}, + "C", + []string{"A", "B", "D", "E"}, + }, + { + "remove non-existent key", + []string{"C", "A", "B", "E", "D"}, + "F", + []string{"A", "B", "C", "D", "E"}, + }, + } + + for _, tt := range tests { + t.Run(tt.name, func(t *testing.T) { + var tree *Node + for _, key := range tt.input { + tree, _ = tree.Set(key, nil) + } + + tree, _, _, _ = tree.Remove(tt.removeKey) + + result := make([]string, 0) + tree.Iterate("", "", func(n *Node) bool { + result = append(result, n.Key()) + return false + }) + + if !slicesEqual(tt.expected, result) { + t.Errorf("want %v got %v", tt.expected, result) + } + }) + } +} + +func TestTraverse(t *testing.T) { + tests := []struct { + name string + input []string + expected []string + }{ + { + "empty tree", + []string{}, + []string{}, + }, + { + "single node tree", + []string{"A"}, + []string{"A"}, + }, + { + "small tree", + []string{"C", "A", "B", "E", "D"}, + []string{"A", "B", "C", "D", "E"}, + }, + { + "large tree", + []string{"H", "D", "L", "B", "F", "J", "N", "A", "C", "E", "G", "I", "K", "M", "O"}, + []string{"A", "B", "C", "D", "E", "F", "G", "H", "I", "J", "K", "L", "M", "N", "O"}, + }, + } + + for _, tt := range tests { + t.Run(tt.name, func(t *testing.T) { + var tree *Node + for _, key := range tt.input { + tree, _ = tree.Set(key, nil) + } + + t.Run("iterate", func(t *testing.T) { + var result []string + tree.Iterate("", "", func(n *Node) bool { + result = append(result, n.Key()) + return false + }) + if !slicesEqual(tt.expected, result) { + t.Errorf("want %v got %v", tt.expected, result) + } + }) + + t.Run("ReverseIterate", func(t *testing.T) { + var result []string + tree.ReverseIterate("", "", func(n *Node) bool { + result = append(result, n.Key()) + return false + }) + expected := make([]string, len(tt.expected)) + copy(expected, tt.expected) + for i, j := 0, len(expected)-1; i < j; i, j = i+1, j-1 { + expected[i], expected[j] = expected[j], expected[i] + } + if !slicesEqual(expected, result) { + t.Errorf("want %v got %v", expected, result) + } + }) + + t.Run("TraverseInRange", func(t *testing.T) { + var result []string + start, end := "C", "M" + tree.TraverseInRange(start, end, true, true, func(n *Node) bool { + result = append(result, n.Key()) + return false + }) + expected := make([]string, 0) + for _, key := range tt.expected { + if key >= start && key < end { + expected = append(expected, key) + } + } + if !slicesEqual(expected, result) { + t.Errorf("want %v got %v", expected, result) + } + }) + }) + } +} + +func TestRotateWhenHeightDiffers(t *testing.T) { + tests := []struct { + name string + input []string + expected []string + }{ + { + "right rotation when left subtree is higher", + []string{"E", "C", "A", "B", "D"}, + []string{"A", "B", "C", "E", "D"}, + }, + { + "left rotation when right subtree is higher", + []string{"A", "C", "E", "D", "F"}, + []string{"A", "C", "D", "E", "F"}, + }, + { + "left-right rotation", + []string{"E", "A", "C", "B", "D"}, + []string{"A", "B", "C", "E", "D"}, + }, + { + "right-left rotation", + []string{"A", "E", "C", "B", "D"}, + []string{"A", "B", "C", "E", "D"}, + }, + } + + for _, tt := range tests { + t.Run(tt.name, func(t *testing.T) { + var tree *Node + for _, key := range tt.input { + tree, _ = tree.Set(key, nil) + } + + // perform rotation or balance + tree = tree.balance() + + // check tree structure + var result []string + tree.Iterate("", "", func(n *Node) bool { + result = append(result, n.Key()) + return false + }) + + if !slicesEqual(tt.expected, result) { + t.Errorf("want %v got %v", tt.expected, result) + } + }) + } +} + +func TestRotateAndBalance(t *testing.T) { + tests := []struct { + name string + input []string + expected []string + }{ + { + "right rotation", + []string{"A", "B", "C", "D", "E"}, + []string{"A", "B", "C", "D", "E"}, + }, + { + "left rotation", + []string{"E", "D", "C", "B", "A"}, + []string{"A", "B", "C", "D", "E"}, + }, + { + "left-right rotation", + []string{"C", "A", "E", "B", "D"}, + []string{"A", "B", "C", "D", "E"}, + }, + { + "right-left rotation", + []string{"C", "E", "A", "D", "B"}, + []string{"A", "B", "C", "D", "E"}, + }, + } + + for _, tt := range tests { + t.Run(tt.name, func(t *testing.T) { + var tree *Node + for _, key := range tt.input { + tree, _ = tree.Set(key, nil) + } + + tree = tree.balance() + + var result []string + tree.Iterate("", "", func(n *Node) bool { + result = append(result, n.Key()) + return false + }) + + if !slicesEqual(tt.expected, result) { + t.Errorf("want %v got %v", tt.expected, result) + } + }) + } +} + +func slicesEqual(w1, w2 []string) bool { + if len(w1) != len(w2) { + return false + } + for i := 0; i < len(w1); i++ { + if w1[0] != w2[0] { + return false + } + } + return true +} + +func maxint8(a, b int8) int8 { + if a > b { + return a + } + return b +} + +func reverseSlice(ss []string) { + for i := 0; i < len(ss)/2; i++ { + j := len(ss) - 1 - i + ss[i], ss[j] = ss[j], ss[i] + } +} diff --git a/examples/gno.land/p/moul/cow/tree.gno b/examples/gno.land/p/moul/cow/tree.gno new file mode 100644 index 00000000000..4abe80cb58a --- /dev/null +++ b/examples/gno.land/p/moul/cow/tree.gno @@ -0,0 +1,124 @@ +package cow + +type ITree interface { + // read operations + + Size() int + Has(key string) bool + Get(key string) (value interface{}, exists bool) + GetByIndex(index int) (key string, value interface{}) + Iterate(start, end string, cb IterCbFn) bool + ReverseIterate(start, end string, cb IterCbFn) bool + IterateByOffset(offset int, count int, cb IterCbFn) bool + ReverseIterateByOffset(offset int, count int, cb IterCbFn) bool + + // write operations + + Set(key string, value interface{}) (updated bool) + Remove(key string) (value interface{}, removed bool) +} + +type IterCbFn func(key string, value interface{}) bool + +//---------------------------------------- +// Tree + +// The zero struct can be used as an empty tree. +type Tree struct { + node *Node +} + +// NewTree creates a new empty AVL tree. +func NewTree() *Tree { + return &Tree{ + node: nil, + } +} + +// Size returns the number of key-value pair in the tree. +func (tree *Tree) Size() int { + return tree.node.Size() +} + +// Has checks whether a key exists in the tree. +// It returns true if the key exists, otherwise false. +func (tree *Tree) Has(key string) (has bool) { + return tree.node.Has(key) +} + +// Get retrieves the value associated with the given key. +// It returns the value and a boolean indicating whether the key exists. +func (tree *Tree) Get(key string) (value interface{}, exists bool) { + _, value, exists = tree.node.Get(key) + return +} + +// GetByIndex retrieves the key-value pair at the specified index in the tree. +// It returns the key and value at the given index. +func (tree *Tree) GetByIndex(index int) (key string, value interface{}) { + return tree.node.GetByIndex(index) +} + +// Set inserts a key-value pair into the tree. +// If the key already exists, the value will be updated. +// It returns a boolean indicating whether the key was newly inserted or updated. +func (tree *Tree) Set(key string, value interface{}) (updated bool) { + newnode, updated := tree.node.Set(key, value) + tree.node = newnode + return updated +} + +// Remove removes a key-value pair from the tree. +// It returns the removed value and a boolean indicating whether the key was found and removed. +func (tree *Tree) Remove(key string) (value interface{}, removed bool) { + newnode, _, value, removed := tree.node.Remove(key) + tree.node = newnode + return value, removed +} + +// Iterate performs an in-order traversal of the tree within the specified key range. +// It calls the provided callback function for each key-value pair encountered. +// If the callback returns true, the iteration is stopped. +func (tree *Tree) Iterate(start, end string, cb IterCbFn) bool { + return tree.node.TraverseInRange(start, end, true, true, + func(node *Node) bool { + return cb(node.Key(), node.Value()) + }, + ) +} + +// ReverseIterate performs a reverse in-order traversal of the tree within the specified key range. +// It calls the provided callback function for each key-value pair encountered. +// If the callback returns true, the iteration is stopped. +func (tree *Tree) ReverseIterate(start, end string, cb IterCbFn) bool { + return tree.node.TraverseInRange(start, end, false, true, + func(node *Node) bool { + return cb(node.Key(), node.Value()) + }, + ) +} + +// IterateByOffset performs an in-order traversal of the tree starting from the specified offset. +// It calls the provided callback function for each key-value pair encountered, up to the specified count. +// If the callback returns true, the iteration is stopped. +func (tree *Tree) IterateByOffset(offset int, count int, cb IterCbFn) bool { + return tree.node.TraverseByOffset(offset, count, true, true, + func(node *Node) bool { + return cb(node.Key(), node.Value()) + }, + ) +} + +// ReverseIterateByOffset performs a reverse in-order traversal of the tree starting from the specified offset. +// It calls the provided callback function for each key-value pair encountered, up to the specified count. +// If the callback returns true, the iteration is stopped. +func (tree *Tree) ReverseIterateByOffset(offset int, count int, cb IterCbFn) bool { + return tree.node.TraverseByOffset(offset, count, false, true, + func(node *Node) bool { + return cb(node.Key(), node.Value()) + }, + ) +} + +// Verify that Tree implements ITree +var _ ITree = (*Tree)(nil) diff --git a/examples/gno.land/p/moul/cow/tree_test.gno b/examples/gno.land/p/moul/cow/tree_test.gno new file mode 100644 index 00000000000..16e0b3ea32b --- /dev/null +++ b/examples/gno.land/p/moul/cow/tree_test.gno @@ -0,0 +1,161 @@ +package cow + +import "testing" + +func TestNewTree(t *testing.T) { + tree := NewTree() + if tree.node != nil { + t.Error("Expected tree.node to be nil") + } +} + +func TestTreeSize(t *testing.T) { + tree := NewTree() + if tree.Size() != 0 { + t.Error("Expected empty tree size to be 0") + } + + tree.Set("key1", "value1") + tree.Set("key2", "value2") + if tree.Size() != 2 { + t.Error("Expected tree size to be 2") + } +} + +func TestTreeHas(t *testing.T) { + tree := NewTree() + tree.Set("key1", "value1") + + if !tree.Has("key1") { + t.Error("Expected tree to have key1") + } + + if tree.Has("key2") { + t.Error("Expected tree to not have key2") + } +} + +func TestTreeGet(t *testing.T) { + tree := NewTree() + tree.Set("key1", "value1") + + value, exists := tree.Get("key1") + if !exists || value != "value1" { + t.Error("Expected Get to return value1 and true") + } + + _, exists = tree.Get("key2") + if exists { + t.Error("Expected Get to return false for non-existent key") + } +} + +func TestTreeGetByIndex(t *testing.T) { + tree := NewTree() + tree.Set("key1", "value1") + tree.Set("key2", "value2") + + key, value := tree.GetByIndex(0) + if key != "key1" || value != "value1" { + t.Error("Expected GetByIndex(0) to return key1 and value1") + } + + key, value = tree.GetByIndex(1) + if key != "key2" || value != "value2" { + t.Error("Expected GetByIndex(1) to return key2 and value2") + } + + defer func() { + if r := recover(); r == nil { + t.Error("Expected GetByIndex to panic for out-of-range index") + } + }() + tree.GetByIndex(2) +} + +func TestTreeRemove(t *testing.T) { + tree := NewTree() + tree.Set("key1", "value1") + + value, removed := tree.Remove("key1") + if !removed || value != "value1" || tree.Size() != 0 { + t.Error("Expected Remove to remove key-value pair") + } + + _, removed = tree.Remove("key2") + if removed { + t.Error("Expected Remove to return false for non-existent key") + } +} + +func TestTreeIterate(t *testing.T) { + tree := NewTree() + tree.Set("key1", "value1") + tree.Set("key2", "value2") + tree.Set("key3", "value3") + + var keys []string + tree.Iterate("", "", func(key string, value interface{}) bool { + keys = append(keys, key) + return false + }) + + expectedKeys := []string{"key1", "key2", "key3"} + if !slicesEqual(keys, expectedKeys) { + t.Errorf("Expected keys %v, got %v", expectedKeys, keys) + } +} + +func TestTreeReverseIterate(t *testing.T) { + tree := NewTree() + tree.Set("key1", "value1") + tree.Set("key2", "value2") + tree.Set("key3", "value3") + + var keys []string + tree.ReverseIterate("", "", func(key string, value interface{}) bool { + keys = append(keys, key) + return false + }) + + expectedKeys := []string{"key3", "key2", "key1"} + if !slicesEqual(keys, expectedKeys) { + t.Errorf("Expected keys %v, got %v", expectedKeys, keys) + } +} + +func TestTreeIterateByOffset(t *testing.T) { + tree := NewTree() + tree.Set("key1", "value1") + tree.Set("key2", "value2") + tree.Set("key3", "value3") + + var keys []string + tree.IterateByOffset(1, 2, func(key string, value interface{}) bool { + keys = append(keys, key) + return false + }) + + expectedKeys := []string{"key2", "key3"} + if !slicesEqual(keys, expectedKeys) { + t.Errorf("Expected keys %v, got %v", expectedKeys, keys) + } +} + +func TestTreeReverseIterateByOffset(t *testing.T) { + tree := NewTree() + tree.Set("key1", "value1") + tree.Set("key2", "value2") + tree.Set("key3", "value3") + + var keys []string + tree.ReverseIterateByOffset(1, 2, func(key string, value interface{}) bool { + keys = append(keys, key) + return false + }) + + expectedKeys := []string{"key2", "key1"} + if !slicesEqual(keys, expectedKeys) { + t.Errorf("Expected keys %v, got %v", expectedKeys, keys) + } +}