-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstreamtube.js
558 lines (477 loc) · 13.3 KB
/
streamtube.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
"use strict";
var vec3 = require('gl-vec3');
var vec4 = require('gl-vec4');
var GRID_TYPES = ['xyz', 'xzy', 'yxz', 'yzx', 'zxy', 'zyx'];
var streamToTube = function(stream, maxDivergence, minDistance, maxNorm) {
var points = stream.points;
var velocities = stream.velocities;
var divergences = stream.divergences;
var verts = [];
var faces = [];
var vectors = [];
var previousVerts = [];
var currentVerts = [];
var intensities = [];
var previousIntensity = 0;
var currentIntensity = 0;
var currentVector = vec4.create();
var previousVector = vec4.create();
var facets = 8;
for (var i = 0; i < points.length; i++) {
var p = points[i];
var fwd = velocities[i];
var r = divergences[i];
if (maxDivergence === 0) {
r = minDistance * 0.05;
}
currentIntensity = vec3.length(fwd) / maxNorm;
currentVector = vec4.create();
vec3.copy(currentVector, fwd);
currentVector[3] = r;
for (var a = 0; a < facets; a++) {
currentVerts[a] = [p[0], p[1], p[2], a];
}
if (previousVerts.length > 0) {
for (var a = 0; a < facets; a++) {
var a1 = (a+1) % facets;
verts.push(
previousVerts[a],
currentVerts[a],
currentVerts[a1],
currentVerts[a1],
previousVerts[a1],
previousVerts[a]
);
vectors.push(
previousVector,
currentVector,
currentVector,
currentVector,
previousVector,
previousVector
);
intensities.push(
previousIntensity,
currentIntensity,
currentIntensity,
currentIntensity,
previousIntensity,
previousIntensity
);
var len = verts.length;
faces.push(
[len-6, len-5, len-4],
[len-3, len-2, len-1]
);
}
}
var tmp1 = previousVerts;
previousVerts = currentVerts;
currentVerts = tmp1;
var tmp2 = previousVector;
previousVector = currentVector;
currentVector = tmp2;
var tmp3 = previousIntensity;
previousIntensity = currentIntensity;
currentIntensity = tmp3;
}
return {
positions: verts,
cells: faces,
vectors: vectors,
vertexIntensity: intensities
};
};
var createTubes = function(streams, colormap, maxDivergence, minDistance) {
var maxNorm = 0;
for (var i=0; i<streams.length; i++) {
var velocities = streams[i].velocities;
for (var j=0; j<velocities.length; j++) {
maxNorm = Math.max(maxNorm,
vec3.length(velocities[j])
);
}
}
var tubes = streams.map(function(s) {
return streamToTube(s, maxDivergence, minDistance, maxNorm);
});
var positions = [];
var cells = [];
var vectors = [];
var vertexIntensity = [];
for (var i=0; i < tubes.length; i++) {
var tube = tubes[i];
var offset = positions.length;
positions = positions.concat(tube.positions);
vectors = vectors.concat(tube.vectors);
vertexIntensity = vertexIntensity.concat(tube.vertexIntensity);
for (var j=0; j<tube.cells.length; j++) {
var cell = tube.cells[j];
var newCell = [];
cells.push(newCell);
for (var k=0; k<cell.length; k++) {
newCell.push(cell[k] + offset);
}
}
}
return {
positions: positions,
cells: cells,
vectors: vectors,
vertexIntensity: vertexIntensity,
colormap: colormap
};
};
var findLastSmallerIndex = function(points, v) {
var len = points.length;
var i;
for (i=0; i<len; i++) {
var p = points[i];
if (p === v) return i;
else if (p > v) return i-1;
}
return i;
};
var clamp = function(v, min, max) {
return v < min ? min : (v > max ? max : v);
};
var sampleMeshgrid = function(point, vectorField, gridInfo) {
var vectors = vectorField.vectors;
var meshgrid = vectorField.meshgrid;
var x = point[0];
var y = point[1];
var z = point[2];
var w = meshgrid[0].length;
var h = meshgrid[1].length;
var d = meshgrid[2].length;
// Find the index of the nearest smaller value in the meshgrid for each coordinate of (x,y,z).
// The nearest smaller value index for x is the index x0 such that
// meshgrid[0][x0] < x and for all x1 > x0, meshgrid[0][x1] >= x.
var x0 = findLastSmallerIndex(meshgrid[0], x);
var y0 = findLastSmallerIndex(meshgrid[1], y);
var z0 = findLastSmallerIndex(meshgrid[2], z);
// Get the nearest larger meshgrid value indices.
// From the above "nearest smaller value", we know that
// meshgrid[0][x0] < x
// meshgrid[0][x0+1] >= x
var x1 = x0 + 1;
var y1 = y0 + 1;
var z1 = z0 + 1;
x0 = clamp(x0, 0, w-1);
x1 = clamp(x1, 0, w-1);
y0 = clamp(y0, 0, h-1);
y1 = clamp(y1, 0, h-1);
z0 = clamp(z0, 0, d-1);
z1 = clamp(z1, 0, d-1);
// Reject points outside the meshgrid, return a zero vector.
if (x0 < 0 || y0 < 0 || z0 < 0 || x1 > w-1 || y1 > h-1 || z1 > d-1) {
return vec3.create();
}
// Normalize point coordinates to 0..1 scaling factor between x0 and x1.
var mX0 = meshgrid[0][x0];
var mX1 = meshgrid[0][x1];
var mY0 = meshgrid[1][y0];
var mY1 = meshgrid[1][y1];
var mZ0 = meshgrid[2][z0];
var mZ1 = meshgrid[2][z1];
var xf = (x - mX0) / (mX1 - mX0);
var yf = (y - mY0) / (mY1 - mY0);
var zf = (z - mZ0) / (mZ1 - mZ0);
if (!isFinite(xf)) xf = 0.5;
if (!isFinite(yf)) yf = 0.5;
if (!isFinite(zf)) zf = 0.5;
var x0off;
var x1off;
var y0off;
var y1off;
var z0off;
var z1off;
if(gridInfo.reversedX) {
x0 = w - 1 - x0;
x1 = w - 1 - x1;
}
if(gridInfo.reversedY) {
y0 = h - 1 - y0;
y1 = h - 1 - y1;
}
if(gridInfo.reversedZ) {
z0 = d - 1 - z0;
z1 = d - 1 - z1;
}
switch(gridInfo.filled) {
case 5: // 'zyx'
z0off = z0;
z1off = z1;
y0off = y0*d;
y1off = y1*d;
x0off = x0*d*h;
x1off = x1*d*h;
break;
case 4: // 'zxy'
z0off = z0;
z1off = z1;
x0off = x0*d;
x1off = x1*d;
y0off = y0*d*w;
y1off = y1*d*w;
break;
case 3: // 'yzx'
y0off = y0;
y1off = y1;
z0off = z0*h;
z1off = z1*h;
x0off = x0*h*d;
x1off = x1*h*d;
break;
case 2: // 'yxz'
y0off = y0;
y1off = y1;
x0off = x0*h;
x1off = x1*h;
z0off = z0*h*w;
z1off = z1*h*w;
break;
case 1: // 'xzy'
x0off = x0;
x1off = x1;
z0off = z0*w;
z1off = z1*w;
y0off = y0*w*d;
y1off = y1*w*d;
break;
default: // case 0: // 'xyz'
x0off = x0;
x1off = x1;
y0off = y0*w;
y1off = y1*w;
z0off = z0*w*h;
z1off = z1*w*h;
break;
}
// Sample data vectors around the (x,y,z) point.
var v000 = vectors[x0off + y0off + z0off];
var v001 = vectors[x0off + y0off + z1off];
var v010 = vectors[x0off + y1off + z0off];
var v011 = vectors[x0off + y1off + z1off];
var v100 = vectors[x1off + y0off + z0off];
var v101 = vectors[x1off + y0off + z1off];
var v110 = vectors[x1off + y1off + z0off];
var v111 = vectors[x1off + y1off + z1off];
var c00 = vec3.create();
var c01 = vec3.create();
var c10 = vec3.create();
var c11 = vec3.create();
vec3.lerp(c00, v000, v100, xf);
vec3.lerp(c01, v001, v101, xf);
vec3.lerp(c10, v010, v110, xf);
vec3.lerp(c11, v011, v111, xf);
var c0 = vec3.create();
var c1 = vec3.create();
vec3.lerp(c0, c00, c10, yf);
vec3.lerp(c1, c01, c11, yf);
var c = vec3.create();
vec3.lerp(c, c0, c1, zf);
return c;
};
var vabs = function(dst, v) {
var x = v[0];
var y = v[1];
var z = v[2];
dst[0] = x < 0 ? -x : x;
dst[1] = y < 0 ? -y : y;
dst[2] = z < 0 ? -z : z;
return dst;
};
var findMinSeparation = function(xs) {
var minSeparation = Infinity;
xs.sort(function(a, b) { return a - b; });
var len = xs.length;
for (var i=1; i<len; i++) {
var d = Math.abs(xs[i] - xs[i-1]);
if (d < minSeparation) {
minSeparation = d;
}
}
return minSeparation;
};
// Finds the minimum per-component distance in positions.
//
var calculateMinPositionDistance = function(positions) {
var xs = [], ys = [], zs = [];
var xi = {}, yi = {}, zi = {};
var len = positions.length;
for (var i=0; i<len; i++) {
var p = positions[i];
var x = p[0], y = p[1], z = p[2];
// Split the positions array into arrays of unique component values.
//
// Why go through the trouble of using a uniqueness hash table vs
// sort and uniq:
//
// Suppose you've got a million positions in a 100x100x100 grid.
//
// Using a uniqueness hash table, you're doing 1M array reads,
// 3M hash table lookups from 100-element hashes, 300 hash table inserts, then
// sorting three 100-element arrays and iterating over them.
// Roughly, 1M + 3M * ln(100) + 300 * ln(100/2) + 3 * 100 * ln(100) + 3 * 100 =
// 1M + 13.8M + 0.0012M + 0.0014M + 0.0003M
// =~ 15M
//
// Sort and uniq solution would do 1M array reads, 3M array inserts,
// sort three 1M-element arrays and iterate over them.
// Roughly, 1M + 3M + 3 * 1M * ln(1M) + 3 * 1M =
// 1M + 3M + 41.4M + 3M
// =~ 48.4M
//
// Guessing that a hard-coded sort & uniq would be faster due to not having
// to run a hashing function on everything. More memory usage though
// (bunch of small hash tables vs. duplicating the input array.)
//
// In JS-land, who knows. Maybe xi[x] casts x to string and destroys perf,
// maybe numeric keys get special-cased, maybe the object lookups run at near O(1)-speeds.
// Maybe the sorting comparison function is expensive to call, maybe it gets inlined or special-cased.
//
// ... You're probably not going to call this with more than 10k positions anyhow, so this is very academic.
//
if (!xi[x]) {
xs.push(x);
xi[x] = true;
}
if (!yi[y]) {
ys.push(y);
yi[y] = true;
}
if (!zi[z]) {
zs.push(z);
zi[z] = true;
}
}
var xSep = findMinSeparation(xs);
var ySep = findMinSeparation(ys);
var zSep = findMinSeparation(zs);
var minSeparation = Math.min(xSep, ySep, zSep);
return isFinite(minSeparation) ? minSeparation : 1;
};
module.exports = function(vectorField, bounds) {
var positions = vectorField.startingPositions;
var maxLength = vectorField.maxLength || 1000;
var tubeSize = vectorField.tubeSize || 1;
var absoluteTubeSize = vectorField.absoluteTubeSize;
var gridFill = vectorField.gridFill || '+x+y+z';
var gridInfo = {};
if(gridFill.indexOf('-x') !== -1) { gridInfo.reversedX = true; }
if(gridFill.indexOf('-y') !== -1) { gridInfo.reversedY = true; }
if(gridFill.indexOf('-z') !== -1) { gridInfo.reversedZ = true; }
gridInfo.filled = GRID_TYPES.indexOf(gridFill.replace(/-/g, '').replace(/\+/g, ''));
var getVelocity = vectorField.getVelocity || function(p) {
return sampleMeshgrid(p, vectorField, gridInfo);
};
var getDivergence = vectorField.getDivergence || function(p, v0) {
var dp = vec3.create();
var e = 0.0001;
vec3.add(dp, p, [e, 0, 0]);
var vx = getVelocity(dp);
vec3.subtract(vx, vx, v0);
vec3.scale(vx, vx, 1/e);
vec3.add(dp, p, [0, e, 0]);
var vy = getVelocity(dp);
vec3.subtract(vy, vy, v0);
vec3.scale(vy, vy, 1/e);
vec3.add(dp, p, [0, 0, e]);
var vz = getVelocity(dp);
vec3.subtract(vz, vz, v0);
vec3.scale(vz, vz, 1/e);
vec3.add(dp, vx, vy);
vec3.add(dp, dp, vz);
return dp;
};
var streams = [];
var minX = bounds[0][0], minY = bounds[0][1], minZ = bounds[0][2];
var maxX = bounds[1][0], maxY = bounds[1][1], maxZ = bounds[1][2];
var inBounds = function(p) {
var x = p[0];
var y = p[1];
var z = p[2];
return !(
x < minX || x > maxX ||
y < minY || y > maxY ||
z < minZ || z > maxZ
);
};
var boundsSize = vec3.distance(bounds[0], bounds[1]);
var maxStepSize = 10 * boundsSize / maxLength;
var maxStepSizeSq = maxStepSize * maxStepSize;
var minDistance = 1;
var maxDivergence = 0; // For component-wise divergence vec3.create();
// In case we need to do component-wise divergence visualization
// var tmp = vec3.create();
var len = positions.length;
if (len > 1) {
minDistance = calculateMinPositionDistance(positions);
}
for (var i = 0; i < len; i++) {
var p = vec3.create();
vec3.copy(p, positions[i]);
var stream = [p];
var velocities = [];
var v = getVelocity(p);
var op = p;
velocities.push(v);
var divergences = [];
var dv = getDivergence(p, v);
var dvLength = vec3.length(dv);
if (isFinite(dvLength) && dvLength > maxDivergence) {
maxDivergence = dvLength;
}
// In case we need to do component-wise divergence visualization
// vec3.max(maxDivergence, maxDivergence, vabs(tmp, dv));
divergences.push(dvLength);
streams.push({points: stream, velocities: velocities, divergences: divergences});
var j = 0;
while (j < maxLength * 100 && stream.length < maxLength && inBounds(p)) {
j++;
var np = vec3.clone(v);
var sqLen = vec3.squaredLength(np);
if (sqLen === 0) {
break;
} else if (sqLen > maxStepSizeSq) {
vec3.scale(np, np, maxStepSize / Math.sqrt(sqLen));
}
vec3.add(np, np, p);
v = getVelocity(np);
if (vec3.squaredDistance(op, np) - maxStepSizeSq > -0.0001 * maxStepSizeSq) {
stream.push(np);
op = np;
velocities.push(v);
var dv = getDivergence(np, v);
var dvLength = vec3.length(dv);
if (isFinite(dvLength) && dvLength > maxDivergence) {
maxDivergence = dvLength;
}
// In case we need to do component-wise divergence visualization
//vec3.max(maxDivergence, maxDivergence, vabs(tmp, dv));
divergences.push(dvLength);
}
p = np;
}
}
var tubes = createTubes(streams, vectorField.colormap, maxDivergence, minDistance);
if (absoluteTubeSize) {
tubes.tubeScale = absoluteTubeSize;
} else {
// Avoid division by zero.
if (maxDivergence === 0) {
maxDivergence = 1;
}
tubes.tubeScale = tubeSize * 0.5 * minDistance / maxDivergence;
}
return tubes;
};
var shaders = require('./lib/shaders');
var createMesh = require('gl-cone3d').createMesh;
module.exports.createTubeMesh = function(gl, params) {
return createMesh(gl, params, {
shaders: shaders,
traceType: 'streamtube'
});
}