-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
267 lines (234 loc) · 10.1 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from __future__ import print_function
import os
import time
import numpy as np
import nibabel as nib
#from dipy.viz import fvtk
from nibabel.streamlines import load, save
from dipy.tracking.utils import length
from dipy.tracking.streamline import set_number_of_points
from dipy.tracking.distances import bundles_distances_mam, bundles_distances_mdf
from nibabel.affines import apply_affine
from sklearn.neighbors import KDTree
#from scipy.spatial import cKDTree as KDTree
from scipy.spatial.distance import cdist
from dissimilarity import compute_dissimilarity
from distances import parallel_distance_computation
from functools import partial
def bundle2roi_distance(bundle, roi_mask, distance='euclidean'):
"""Compute the minimum euclidean distance between a
set of streamlines and a ROI nifti mask.
"""
data = roi_mask.get_data()
affine = roi_mask.affine
roi_coords = np.array(np.where(data)).T
x_roi_coords = apply_affine(affine, roi_coords)
result=[]
for sl in bundle:
d = cdist(sl, x_roi_coords, distance)
result.append(np.min(d))
return result
def resample_tract(tract, step_size):
"""Resample the tract with the given step size.
"""
lengths=list(length(tract))
tract_res = []
for i, f in enumerate(tract):
if lengths[i]>step_size:
nb_res_points = np.int(np.ceil(lengths[i]/step_size))
tmp = set_number_of_points(f, nb_res_points)
else:
tmp = f
tract_res.append(tmp)
tract_res = nib.streamlines.array_sequence.ArraySequence(tract_res)
return tract_res
def streamlines_idx(target_tract, kdt, prototypes, distance_func=bundles_distances_mam, nb_points=20, warning_threshold=1.0e-0):
"""Retrieve indexes of the streamlines of the target tract.
"""
if distance_func==bundles_distances_mdf:
print("Resampling the tract with %s points" %nb_points)
target_tract = set_number_of_points(target_tract, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
dm_target_tract = distance(target_tract, prototypes)
D, I = kdt.query(dm_target_tract, k=1)
if (D > warning_threshold).any():
print("WARNING (streamlines_idx()): for %s streamlines D > 1.0e-4 !!" % (D > warning_threshold).sum())
#print(D)
target_tract_idx = I.squeeze()
return target_tract_idx
def compute_superset(true_tract, kdt, prototypes, k=2000, distance_func=bundles_distances_mam, nb_points=20):
"""Compute a superset of the true target tract with k-NN.
"""
if distance_func==bundles_distances_mdf:
#print("Resampling the tract with %s points" %nb_points)
true_tract = set_number_of_points(true_tract, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
true_tract = np.array(true_tract, dtype=np.object)
dm_true_tract = distance(true_tract, prototypes)
D, I = kdt.query(dm_true_tract, k=k)
superset_idx = np.unique(I.flat)
return superset_idx
def NN(true_tract, kdt, prototypes, k=2000, distance_func=bundles_distances_mam, nb_points=20):
"""Compute the k-NN.
"""
if distance_func==bundles_distances_mdf:
#print("Resampling the tract with %s points" %nb_points)
true_tract = set_number_of_points(true_tract, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
true_tract = np.array(true_tract, dtype=np.object)
dm_true_tract = distance(true_tract, prototypes)
D, I = kdt.query(dm_true_tract, k=k)
return D[0], I[0]
def NN_radius(true_tract, kdt, prototypes, r=10, distance_func=bundles_distances_mam, nb_points=20):
"""Compute the k-NN.
"""
if distance_func==bundles_distances_mdf:
#print("Resampling the tract with %s points" %nb_points)
true_tract = set_number_of_points(true_tract, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
true_tract = np.array(true_tract, dtype=np.object)
dm_true_tract = distance(true_tract, prototypes)
I = kdt.query_radius(dm_true_tract, r=r)
I = np.sort(I[0])
return I
def compute_kdtree_and_dr_tractogram(tractogram, num_prototypes=40,
distance_func=bundles_distances_mam, nb_points=20):
"""Compute the dissimilarity representation of the target tractogram and
build the kd-tree.
"""
t0 = time.time()
if distance_func==bundles_distances_mdf:
print("Resampling the tractogram with %s points" %nb_points)
tractogram = set_number_of_points(tractogram, nb_points)
distance = partial(parallel_distance_computation, distance=distance_func)
tractogram = np.array(tractogram, dtype=np.object)
print("Computing dissimilarity matrices using %s prototypes..." % num_prototypes)
dm_tractogram, prototype_idx = compute_dissimilarity(tractogram,
distance,
num_prototypes,
prototype_policy='sff',
verbose=False)
prototypes = tractogram[prototype_idx]
print("Building the KD-tree of tractogram.")
kdt = KDTree(dm_tractogram)
print("Time spent to compute the DR of the tractogram: %s seconds" %(time.time()-t0))
return kdt, prototypes
def save_tract(tract, t1_filename, out_filename):
"""Save a tract (voxel sizes and dimension are stored in the t1 file).
"""
extension = os.path.splitext(out_filename)[1]
t1 = nib.load(t1_filename)
aff_vox_to_ras = t1.affine
header = t1.header
dimensions = header.get_data_shape()
voxel_sizes = header.get_zooms()
if extension == '.trk':
hdr = nib.streamlines.trk.TrkFile.create_empty_header()
hdr['voxel_sizes'] = voxel_sizes
hdr['dimensions'] = dimensions
hdr['voxel_order'] = 'LAS'
hdr['voxel_to_rasmm'] = aff_vox_to_ras
elif extension == '.tck':
hdr = nib.streamlines.tck.TckFile.create_empty_header()
hdr['voxel_sizes'] = voxel_sizes
hdr['dimensions'] = dimensions
else:
print("%s format not supported." % extension)
t = nib.streamlines.tractogram.Tractogram(tract, affine_to_rasmm=np.eye(4))
nib.streamlines.save(t, out_filename, header=hdr)
print("Bundle saved in %s" % out_filename)
def save_bundle(estimated_bundle_idx, static_tractogram, out_filename):
"""Save a tract (voxel sizes and dimension are stored in the tractogram file).
"""
extension = os.path.splitext(out_filename)[1]
static_tractogram = nib.streamlines.load(static_tractogram)
aff_vox_to_ras = static_tractogram.affine
voxel_sizes = static_tractogram.header['voxel_sizes']
dimensions = static_tractogram.header['dimensions']
static_tractogram = static_tractogram.streamlines
estimated_bundle = static_tractogram[estimated_bundle_idx]
if extension == '.trk':
hdr = nib.streamlines.trk.TrkFile.create_empty_header()
hdr['voxel_sizes'] = voxel_sizes
hdr['dimensions'] = dimensions
hdr['voxel_order'] = 'LAS'
hdr['voxel_to_rasmm'] = aff_vox_to_ras
elif extension == '.tck':
hdr = nib.streamlines.tck.TckFile.create_empty_header()
hdr['voxel_sizes'] = voxel_sizes
hdr['dimensions'] = dimensions
else:
print("%s format not supported." % extension)
t = nib.streamlines.tractogram.Tractogram(estimated_bundle, affine_to_rasmm=np.eye(4))
nib.streamlines.save(t, out_filename, header=hdr)
print("Bundle saved in %s" % out_filename)
def save_trk(streamlines, out_file, affine=np.zeros((4,4)), vox_sizes=np.array([0,0,0]), vox_order='LAS', dim=np.array([0,0,0])):
"""
This function saves tracts in Trackvis '.trk' format.
The default values for the parameters are the values for the HCP data.
"""
if affine.any()==0:
affine = np.array([[ -1.25, 0. , 0. , 90. ],
[ 0. , 1.25, 0. , -126. ],
[ 0. , 0. , 1.25, -72. ],
[ 0. , 0. , 0. , 1. ]],
dtype=np.float32)
if (vox_sizes==[0,0,0]).all():
vox_sizes = np.array([1.25, 1.25, 1.25], dtype=np.float32)
if (dim==[0,0,0]).all():
dim = np.array([145, 174, 145], dtype=np.int16)
if out_file.split('.')[-1] != 'trk':
print("Format not supported.")
# Create a new header with the correct affine
hdr = nib.streamlines.trk.TrkFile.create_empty_header()
hdr['voxel_sizes'] = vox_sizes
hdr['voxel_order'] = vox_order
hdr['dimensions'] = dim
hdr['voxel_to_rasmm'] = affine
hdr['nb_streamlines'] = len(streamlines)
t = nib.streamlines.tractogram.Tractogram(streamlines=streamlines, affine_to_rasmm=np.eye(4))
nib.streamlines.save(t, out_file, header=hdr)
def show_both_bundles(bundles, colors=None, show=True, fname=None):
"""Show two bundles
"""
ren = fvtk.ren()
ren.SetBackground(1., 1, 1)
colors=[fvtk.colors.blue, fvtk.colors.red]
for (i, bundle) in enumerate(bundles):
color = colors[i]
lines = fvtk.streamtube(bundle, color, linewidth=0.3)
lines.RotateX(-90)
lines.RotateZ(90)
fvtk.add(ren, lines)
if show:
fvtk.show(ren)
if fname is not None:
sleep(1)
fvtk.record(ren, n_frames=1, out_path=fname, size=(1500,1000))
fvtk.show(ren)
def show_tracts(estimated_target_tract, target_tract, fname=None):
"""Visualization of the tracts.
"""
ren = fvtk.ren()
fvtk.add(ren, fvtk.line(estimated_target_tract, fvtk.colors.green,
linewidth=1, opacity=0.3))
fvtk.add(ren, fvtk.line(target_tract, fvtk.colors.white,
linewidth=1, opacity=0.3))
if fname is not None:
fvtk.record(ren, n_frames=1, out_path=fname, size=(1500,1000))
fvtk.show(ren)
else:
fvtk.show(ren)
fvtk.clear(ren)
def show_tract(target_tract, linewidth=1, fname=None):
"""Visualization of a tract.
"""
ren = fvtk.ren()
fvtk.add(ren, fvtk.line(target_tract, fvtk.colors.red,
linewidth=linewidth, opacity=0.5))
if fname is not None:
fvtk.record(ren, n_frames=1, out_path=fname, size=(1500,1000))
fvtk.show(ren)
else:
fvtk.show(ren)
fvtk.clear(ren)