-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathmodels.py
477 lines (349 loc) · 14.2 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
from __future__ import print_function, division
import numpy as np
from keras.datasets import mnist, cifar10, cifar100, imdb
from keras.models import Model
from keras.layers.core import Dense, Activation, Flatten
from keras.layers.core import Dropout, SpatialDropout1D
from keras.layers import Input
from keras.layers.normalization import BatchNormalization
from keras.layers.embeddings import Embedding
from keras.callbacks import ModelCheckpoint
from keras.callbacks import LearningRateScheduler
from keras.preprocessing import sequence
from keras.layers import LSTM
from keras.optimizers import SGD
from keras.preprocessing.image import ImageDataGenerator
from resnet import cifar10_resnet
from loss import (crossentropy, robust, unhinged, sigmoid, ramp, savage,
boot_soft)
# losses that need sigmoid on top of last layer
yes_softmax = ['crossentropy', 'forward', 'est_forward', 'backward',
'est_backward', 'boot_soft', 'savage']
# unhinged needs bounded models or it diverges
yes_bound = ['unhinged', 'ramp', 'sigmoid']
class KerasModel():
def get_data(self):
(X_train, y_train), (X_test, y_test) = self.load_data()
idx_perm = np.random.RandomState(101).permutation(X_train.shape[0])
X_train, y_train = X_train[idx_perm], y_train[idx_perm]
X_train = X_train.astype('float32')
X_test = X_test.astype('float32')
print('X_train shape:', X_train.shape)
print(X_train.shape[0], 'train samples')
print(X_test.shape[0], 'test samples')
return X_train, X_test, y_train, y_test
# custom losses for the CNN
def make_loss(self, loss, P=None):
if loss == 'crossentropy':
return crossentropy
elif loss in ['forward', 'backward']:
return robust(loss, P)
elif loss == 'unhinged':
return unhinged
elif loss == 'sigmoid':
return sigmoid
elif loss == 'ramp':
return ramp
elif loss == 'savage':
return savage
elif loss == 'boot_soft':
return boot_soft
else:
ValueError("Loss unknown.")
def compile(self, model, loss, P=None):
if self.optimizer is None:
ValueError()
metrics = ['accuracy']
model.compile(loss=self.make_loss(loss, P),
optimizer=self.optimizer, metrics=metrics)
model.summary()
self.model = model
def load_model(self, file):
self.model.load_weights(file)
print('Loaded model from %s' % file)
def fit_model(self, model_file, X_train, Y_train, validation_split=None,
validation_data=None):
# cannot do both
if validation_data is not None and validation_split is not None:
return ValueError()
callbacks = []
monitor = 'val_loss'
# monitor = 'val_acc'
mc_callback = ModelCheckpoint(model_file, monitor=monitor,
verbose=1, save_best_only=True)
callbacks.append(mc_callback)
if hasattr(self, 'scheduler'):
callbacks.append(self.scheduler)
# use data augmentation
if hasattr(self, 'data_generator'):
# hack for using validation with data augmentation
idx_val = np.round(validation_split * X_train.shape[0]).astype(int)
X_val, Y_val = X_train[:idx_val], Y_train[:idx_val]
X_train_local, Y_train_local = X_train[idx_val:], Y_train[idx_val:]
self.data_generator.fit(X_train_local)
history = \
self.model.fit_generator(
self.data_generator.flow(X_train_local, Y_train_local,
batch_size=self.num_batch),
steps_per_epoch=X_train.shape[0] // self.num_batch,
epochs=self.epochs, max_q_size=100,
validation_data=(X_val, Y_val),
verbose=1, callbacks=callbacks)
else:
history = self.model.fit(
X_train, Y_train, batch_size=self.num_batch,
epochs=self.epochs,
validation_split=validation_split,
validation_data=validation_data,
verbose=1, callbacks=callbacks)
# use the model that reached the lowest loss at training time
self.load_model(model_file)
return history.history
def evaluate_model(self, X, Y):
score = self.model.evaluate(X, Y, batch_size=self.num_batch, verbose=1)
print('Test score:', score[0])
print('Test accuracy:', score[1])
return score[1]
def predict_proba(self, X):
pred = self.model.predict(X, batch_size=self.num_batch, verbose=1)
return pred
class MNISTModel(KerasModel):
def __init__(self, num_batch=32):
self.num_batch = num_batch
self.classes = 10
self.epochs = 40
self.normalize = True
self.optimizer = None
def load_data(self):
(X_train, y_train), (X_test, y_test) = mnist.load_data()
X_train = X_train.reshape(60000, 784)
X_test = X_test.reshape(10000, 784)
if self.normalize:
X_train = X_train / 255.
X_test = X_test / 255.
return (X_train, y_train), (X_test, y_test)
def build_model(self, loss, P=None):
input = Input(shape=(784,))
x = Dense(128, kernel_initializer='he_normal')(input)
x = Activation('relu')(x)
x = Dropout(0.2)(x)
x = Dense(128, kernel_initializer='he_normal')(x)
x = Activation('relu')(x)
x = Dropout(0.2)(x)
output = Dense(10, kernel_initializer='he_normal')(x)
if loss in yes_bound:
output = BatchNormalization(axis=1)(output)
if loss in yes_softmax:
output = Activation('softmax')(output)
model = Model(inputs=input, outputs=output)
self.compile(model, loss, P)
class CIFAR10Model(KerasModel):
def __init__(self, num_batch=32, type='deep'):
self.num_batch = num_batch
self.classes = 10
self.img_channels = 3
self.img_rows = 32
self.img_cols = 32
self.filters = 32
self.num_pool = 2
self.num_conv = 3
self.type = type
self.epochs = 120
self.augmentation = True
self.optimizer = SGD(lr=0.1, momentum=0.9, decay=0.0)
self.lr_scheduler()
self.decay = 0.0001
def load_data(self):
(X_train, y_train), (X_test, y_test) = cifar10.load_data()
X_train = X_train.reshape(X_train.shape[0], self.img_rows,
self.img_cols, self.img_channels)
X_test = X_test.reshape(X_test.shape[0], self.img_rows, self.img_cols,
self.img_channels)
means = X_train.mean(axis=0)
X_train = (X_train - means)
X_test = (X_test - means)
if self.augmentation:
print('Data Augmentation')
# data augmentation
self.data_generator = \
ImageDataGenerator(
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True)
# they are 2D originally in cifar
y_train = y_train.ravel()
y_test = y_test.ravel()
return (X_train, y_train), (X_test, y_test)
def lr_scheduler(self):
def scheduler(epoch):
if epoch > 80:
return 0.001
elif epoch > 40:
return 0.01
else:
return 0.1
print('LR scheduler')
self.scheduler = LearningRateScheduler(scheduler)
def build_model(self, loss, P=None):
if self.type[:-1] == 'resnet':
model = cifar10_resnet(int(self.type[-1]), self, self.decay, loss)
self.compile(model, loss, P)
class CIFAR100Model(KerasModel):
def __init__(self, num_batch=32):
self.num_batch = num_batch
self.classes = 100 # 100 classes
self.img_channels = 3
self.img_rows = 32
self.img_cols = 32
self.filters = 32
self.num_pool = 2
self.num_conv = 3
self.epochs = 150
self.augmentation = True
self.optimizer = SGD(lr=0.1, momentum=0.9, decay=0.0)
self.decay = 10 ** -3
self.lr_scheduler()
def lr_scheduler(self):
def scheduler(epoch):
if epoch > 120:
return 0.001
elif epoch > 80:
return 0.01
else:
return 0.1
print('LR scheduler')
self.scheduler = LearningRateScheduler(scheduler)
def load_data(self):
(X_train, y_train), (X_test, y_test) = cifar100.load_data()
X_train = X_train.reshape(X_train.shape[0], self.img_rows,
self.img_cols, self.img_channels)
X_test = X_test.reshape(X_test.shape[0], self.img_rows, self.img_cols,
self.img_channels)
means = X_train.mean(axis=0)
# std = np.std(X_train)
X_train = (X_train - means) # / std
X_test = (X_test - means) # / std
if self.augmentation:
print('Data Augmentation')
# data augmentation
self.data_generator = \
ImageDataGenerator(
width_shift_range=0.1,
height_shift_range=0.1,
horizontal_flip=True)
# they are 2D originally in cifar
y_train = y_train.ravel()
y_test = y_test.ravel()
return (X_train, y_train), (X_test, y_test)
def build_model(self, loss, P=None):
model = cifar10_resnet(7, self, self.decay, loss)
self.compile(model, loss, P)
class IMDBModel(KerasModel):
def __init__(self, num_batch=32):
self.num_batch = num_batch
self.max_features = 5000
self.maxlen = 400
self.embedding_dims = 50
self.hidden_dims = 256
self.epochs = 50
self.classes = 2
self.optimizer = None
def load_data(self):
(X_train, y_train), (X_test, y_test) = \
imdb.load_data(num_words=self.max_features, seed=11)
X_train = sequence.pad_sequences(X_train, maxlen=self.maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=self.maxlen)
return (X_train, y_train), (X_test, y_test)
def build_model(self, loss, P=None):
input = Input(shape=(self.maxlen,))
x = Embedding(self.max_features, self.embedding_dims)(input)
x = SpatialDropout1D(0.8)(x)
x = Activation('relu')(x)
x = Flatten()(x)
output = Dense(self.classes, kernel_initializer='he_normal')(x)
if loss in yes_bound:
output = BatchNormalization(axis=1)(output)
if loss in yes_softmax:
output = Activation('softmax')(output)
model = Model(inputs=input, outputs=output)
self.compile(model, loss, P)
class LSTMModel(KerasModel):
def __init__(self, num_batch=32):
self.num_batch = num_batch
self.max_features = 5000
self.maxlen = 400
self.embedding_dims = 512
self.lstm_dim = 512
self.hidden_dims = 128
self.epochs = 50
self.classes = 2
self.optimizer = None
def load_data(self):
(X_train, y_train), (X_test, y_test) = \
imdb.load_data(num_words=self.max_features, seed=11)
X_train = sequence.pad_sequences(X_train, maxlen=self.maxlen)
X_test = sequence.pad_sequences(X_test, maxlen=self.maxlen)
return (X_train, y_train), (X_test, y_test)
def build_model(self, loss, P=None):
input = Input(shape=(self.maxlen,))
x = Embedding(self.max_features, self.embedding_dims)(input)
x = SpatialDropout1D(0.8)(x)
x = LSTM(self.lstm_dim, kernel_initializer='uniform')(x)
x = Dense(self.embedding_dims, kernel_initializer='he_normal')(x)
x = Dropout(0.5)(x)
x = Activation('relu')(x)
output = Dense(self.classes, kernel_initializer='he_normal')(x)
if loss in yes_bound:
output = BatchNormalization(axis=1)(output)
if loss in yes_softmax:
output = Activation('softmax')(output)
model = Model(inputs=input, outputs=output)
self.compile(model, loss, P)
class NoiseEstimator():
def __init__(self, classifier, row_normalize=True, alpha=0.0,
filter_outlier=False, cliptozero=False, verbose=0):
"""classifier: an ALREADY TRAINED model. In the ideal case, classifier
should be powerful enough to only make mistakes due to label noise."""
self.classifier = classifier
self.row_normalize = row_normalize
self.alpha = alpha
self.filter_outlier = filter_outlier
self.cliptozero = cliptozero
self.verbose = verbose
def fit(self, X):
# number of classes
c = self.classifier.classes
T = np.empty((c, c))
# predict probability on the fresh sample
eta_corr = self.classifier.predict_proba(X)
# find a 'perfect example' for each class
for i in np.arange(c):
if not self.filter_outlier:
idx_best = np.argmax(eta_corr[:, i])
else:
eta_thresh = np.percentile(eta_corr[:, i], 97,
interpolation='higher')
robust_eta = eta_corr[:, i]
robust_eta[robust_eta >= eta_thresh] = 0.0
idx_best = np.argmax(robust_eta)
for j in np.arange(c):
T[i, j] = eta_corr[idx_best, j]
self.T = T
return self
def predict(self):
T = self.T
c = self.classifier.classes
if self.cliptozero:
idx = np.array(T < 10 ** -6)
T[idx] = 0.0
if self.row_normalize:
row_sums = T.sum(axis=1)
T /= row_sums[:, np.newaxis]
if self.verbose > 0:
print(T)
if self.alpha > 0.0:
T = self.alpha * np.eye(c) + (1.0 - self.alpha) * T
if self.verbose > 0:
print(T)
print(np.linalg.inv(T))
return T