-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathMLCEL_MACD.pine
352 lines (303 loc) · 16.3 KB
/
MLCEL_MACD.pine
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
// A strategy using "Machine Learning : Cosine Similarity & Euclidean + Lorentzian Distance" and MACD indicators
// The strategy has been explained in this video: https://youtu.be/f2f-Tmf2Eec
// © 2023 Geraked, Rabist
// Licensed under MIT
// Backtesting result:
// Symbol: EURUSD
// Timeframe: 4 HOUR
// Range: 2022-06-16 — 2023-09-21
// Percent Profitable: 51.0%
// Total Trades: 47
// Profit Factor: 2.101
//@version=5
strategy("MLCEL and MACD Strategy", "MLCEL_MACD", pyramiding=10, default_qty_type=strategy.percent_of_equity, overlay=true)
import chhagansinghmeena/BankNifty_CSM/16 as CSM
tpCoef = input.float(3, "TP Coef", group="Strategy")
slLookBack = input.int(7, "SL Look Back", group="Strategy")
reverse = input.bool(false, "Reverse Signal", group="Strategy")
rationalQuadratic(_src, _lookback, _relativeWeight, startAtBar) =>
_currentWeight = 0.0
_cumulativeWeight = 0.0
_size = array.size(array.from(_src))
for i = 0 to _size + startAtBar
y = _src[i]
w = math.pow(1 + (math.pow(i, 2) / ((math.pow(_lookback, 2) * 2 * _relativeWeight))), -_relativeWeight)
_currentWeight += y * w
_cumulativeWeight += w
rationalQuad = _currentWeight / _cumulativeWeight
rationalQuad
get_Linear_interpolation(series float src, float oldMax , simple int lookback=100) =>
minVal = ta.lowest(src,lookback)
(src - minVal) / (oldMax - minVal)
n_rsi(series float src, simple int n1, simple int n2) =>
get_Linear_interpolation(ta.ema(ta.rsi(src, n1), n2),100)
calc_kst(series float src) =>
lengthROC1 = 10, lengthROC2 = 15, lengthROC3 = 20, lengthROC4 = 30
roc1 = ta.change(src, lengthROC1), roc2 = ta.change(src, lengthROC2), roc3 = ta.change(src, lengthROC3), roc4 = ta.change(src, lengthROC4)
smoothed1 = ta.sma(roc1, 3), smoothed2 = ta.sma(roc2, 3), smoothed3 = ta.sma(roc3, 3), smoothed4 = ta.sma(roc4, 3)
kstLine = smoothed1 + 2 * smoothed2 + 3 * smoothed3 + 4 * smoothed4
rsiKST = ta.rsi(kstLine, 14)
rsiKST
get_linear_transformation(series float src = close, float min, float max, int lookback = 200) =>
_historicMin = ta.highest(nz(src), lookback)
_historicMax = ta.lowest(nz(src), lookback)
linearValue = min + (max - min) * (src - _historicMin) / math.max(_historicMax - _historicMin, 10e-10)
linearValue
sigmoid(series float src, int lookback = 20, float relativeWeight = 8, int startAtBar = 25) =>
_currentWeight = 0.0
_cumulativeWeight = 0.0
_size = ta.barssince(startAtBar) + 1
for i = _size to math.max(startAtBar, lookback + startAtBar) - 1
y = src[i]
w = math.pow(1 + (math.pow(i - startAtBar, 2) / (math.pow(lookback, 2) * 2 * relativeWeight)), -relativeWeight)
_currentWeight += y * w
_cumulativeWeight += w
sigmoidValue = _currentWeight / _cumulativeWeight
sigmoidValue
macd(series float src = close) =>
[macdLine, signalLine, _] = ta.macd(src, 12, 26, 9)
ma = get_linear_transformation(macdLine, 14, 1)
sa = get_linear_transformation(signalLine, 14, 1)
macd_val = math.avg(ma, sa)
macd_val
historyLookBack = input.int(title='History Lookback', defval=2000, group='General Settings', tooltip='Number of historical periods to consider for analysis.')
nearest_Probable_Distance = input.int(title='Nearest Probable Distance', defval=8, group='General Settings', tooltip='The closest distance to consider when determining probable values.')
dash_loc = input.session("Top Right", "Stats Location", options=["Top Right", "Bottom Right", "Top Left", "Bottom Left", "Middle Right", "Bottom Center"], group='General Settings', inline="Stats Location", tooltip='The position of the statistics display on the chart.')
text_size = input.session('Small', "Stats Size", options=["Tiny", "Small", "Normal", "Large"], group='General Settings', inline="Stats Location", tooltip='The size of the text used for the statistics display.')
trenSelection = input.string(title='Moving Average Selection', options=['CPMA', 'FRMA', 'RationalQuad'], defval='RationalQuad', group='Moving Averages', tooltip='The type of moving average to use for trend analysis.')
cpmaLength = input.int(title="CPMA Length", defval=9, group='Moving Averages', tooltip='The length of the Centered Price Moving Average (CPMA) used for trend analysis.')
frmaLength = input.int(title="FRMA Length", defval=14, group='Moving Averages', tooltip='The length of the Fractal Adaptive Moving Average (FRMA) used for trend analysis.')
enableFilter = input.bool(title="Enable Trend Filter", defval=true, group='Filter', tooltip='Enable or disable the trend filter for signal processing, which provides greater accuracy.')
isRational = input.bool(title="Use Rational smoothing", defval=true, group='Filter', tooltip='Enable or disable the rational smoothing function for the selected moving average, used as a trend filter.')
isRationalSigma = input.bool(title="Use Sigmoid smoothing ", defval=true, group='Filter', tooltip='Enable or disable the sigmoid smoothing function, which works in conjunction with the rational smoothing function.')
methodSelection = input.string(title='Distance Calculation', options=['Lorentzian', 'Euclidean', 'Cosine similarity'], defval='Cosine similarity', group='Machine Learning : Methods', tooltip='The method used for calculating the distance similarity or dissimilarity when processing signals using machine learning techniques.')
var table_position = dash_loc == 'Top Left' ? position.top_left :
dash_loc == 'Bottom Left' ? position.bottom_left :
dash_loc == 'Middle Right' ? position.middle_right :
dash_loc == 'Bottom Center' ? position.bottom_center :
dash_loc == 'Top Right' ? position.top_right : position.bottom_right
var table_text_size = text_size == 'Tiny' ? size.tiny :
text_size == 'Small' ? size.small :
text_size == 'Normal' ? size.normal : size.large
CPMA = CSM.CSM_CPMA(length = cpmaLength)
FRMA = CSM.frama_Calculation(close,length = frmaLength)
type FeatureArrays
array<float> f1
array<float> f2
array<float> f3
array<float> f4
array<float> f5
array<float> f6
type FeatureSeries
float f1
float f2
float f3
float f4
float f5
float f6
series_from(feature_string, _close, _high, _low, _hlc3, f_paramA, f_paramB) =>
switch feature_string
"RSI" => n_rsi(_close, f_paramA, f_paramB)
"KST" => get_Linear_interpolation(calc_kst(src = _close),100)
"CPMA"=> get_linear_transformation(CPMA,14,1)
"VWAP"=> get_linear_transformation(ta.vwap(_close),14,1)
"FRAMA"=> get_linear_transformation(FRMA,14,1)
"MACD"=> macd(_close)
featureSeries =
FeatureSeries.new(
series_from("CPMA", close, high, low, hlc3, 0, 0), // f1
series_from("RSI", close, high, low, hlc3, 14, 1), // f2
series_from("VWAP", close, high, low, hlc3, 0, 0), // f3
series_from("KST", close, high, low, hlc3, 0, 0), // f4
series_from("FRAMA", close, high, low, hlc3, 0, 0), // f5
series_from("MACD", close, high, low, hlc3, 0, 0) // f6
)
var f1Array = array.new_float()
var f2Array = array.new_float()
var f3Array = array.new_float()
var f4Array = array.new_float()
var f5Array = array.new_float()
var f6Array = array.new_float()
array.push(f1Array, featureSeries.f1)
array.push(f2Array, featureSeries.f2)
array.push(f3Array, featureSeries.f3)
array.push(f4Array, featureSeries.f4)
array.push(f5Array, featureSeries.f5)
array.push(f6Array, featureSeries.f6)
featureArrays =
FeatureArrays.new(
f1Array, // f1
f2Array, // f2
f3Array, // f3
f4Array, // f4
f5Array, // f5
f6Array // f6
)
rqkValue = isRationalSigma ? sigmoid(close) : rationalQuadratic(close, 8, 0.5, 25)
get_euclidean_distance(int i, FeatureSeries featureSeries, FeatureArrays featureArrays) =>
distance = 0.0
distance += math.pow(featureSeries.f1 - array.get(featureArrays.f1, i), 2)
distance += math.pow(featureSeries.f2 - array.get(featureArrays.f2, i), 2)
distance += math.pow(featureSeries.f4 - array.get(featureArrays.f4, i), 2)
distance += math.pow(featureSeries.f5 - array.get(featureArrays.f5, i), 2)
distance += math.pow(featureSeries.f6 - array.get(featureArrays.f6, i), 2)
if str.tonumber(timeframe.period) <= 20
distance += math.pow(featureSeries.f3 - array.get(featureArrays.f3, i), 2)
math.sqrt(distance)
get_lorentzian_distance(int i, FeatureSeries featureSeries, FeatureArrays featureArrays) =>
distance = 0.0
distance += math.log(1+math.abs(featureSeries.f1 - array.get(featureArrays.f1, i)))
distance += math.log(1+math.abs(featureSeries.f2 - array.get(featureArrays.f2, i)))
distance += math.log(1+math.abs(featureSeries.f4 - array.get(featureArrays.f4, i)))
distance += math.log(1+math.abs(featureSeries.f5 - array.get(featureArrays.f5, i)))
distance += math.log(1+math.abs(featureSeries.f6 - array.get(featureArrays.f6, i)))
if str.tonumber(timeframe.period) <= 20
distance += math.log(1+math.abs(featureSeries.f3 - array.get(featureArrays.f3, i)))
math.sqrt(distance)
get_cosine_similarity(i, featureSeries, featureArrays) =>
dotProduct = 0.0
magnitudeSeries = 0.0
magnitudeArray = 0.0
dotProduct += featureSeries.f1 * array.get(featureArrays.f1, i)
dotProduct += featureSeries.f2 * array.get(featureArrays.f2, i)
dotProduct += featureSeries.f4 * array.get(featureArrays.f4, i)
dotProduct += featureSeries.f5 * array.get(featureArrays.f5, i)
dotProduct += featureSeries.f6 * array.get(featureArrays.f6, i)
magnitudeSeries += math.pow(featureSeries.f1, 2)
magnitudeSeries += math.pow(featureSeries.f2, 2)
magnitudeSeries += math.pow(featureSeries.f4, 2)
magnitudeSeries += math.pow(featureSeries.f5, 2)
magnitudeSeries += math.pow(featureSeries.f6, 2)
magnitudeArray += math.pow(array.get(featureArrays.f1, i), 2)
magnitudeArray += math.pow(array.get(featureArrays.f2, i), 2)
magnitudeArray += math.pow(array.get(featureArrays.f4, i), 2)
magnitudeArray += math.pow(array.get(featureArrays.f5, i), 2)
magnitudeArray += math.pow(array.get(featureArrays.f6, i), 2)
if str.tonumber(timeframe.period) <= 20
dotProduct += featureSeries.f3 * array.get(featureArrays.f3, i)
magnitudeSeries += math.pow(featureSeries.f3, 2)
magnitudeArray += math.pow(array.get(featureArrays.f3, i), 2)
magnitudeSeries := math.sqrt(magnitudeSeries)
magnitudeArray := math.sqrt(magnitudeArray)
if magnitudeSeries == 0.0 or magnitudeArray == 0.0
0.0
else
dotProduct / (magnitudeSeries * magnitudeArray)
maxBarsBackIndex = last_bar_index >= historyLookBack ? last_bar_index - historyLookBack : 0
src = close
y_train_series = src[4] < src[0] ? -1 : src[4] > src[0] ? 1 : 0
var y_train_array = array.new_int(0)
var predictions = array.new_float(0)
var prediction = 0.
var signal = 0
var distances = array.new_float(0)
array.push(y_train_array, y_train_series)
lastDistance = -1.0
size = math.min(historyLookBack-1, array.size(y_train_array)-1)
sizeLoop = math.min(historyLookBack-1, size)
get_ML_Distance(i) =>
switch
methodSelection == 'Lorentzian' => get_lorentzian_distance(i, featureSeries, featureArrays)
methodSelection == 'Euclidean' => get_euclidean_distance(i, featureSeries, featureArrays)
methodSelection == 'Cosine similarity' => get_cosine_similarity(i, featureSeries, featureArrays)
if bar_index >= maxBarsBackIndex
for i = 0 to sizeLoop
d = get_ML_Distance(i)
if d >= lastDistance and i % 4
lastDistance := d
array.push(distances, d)
array.push(predictions, math.round(array.get(y_train_array, i)))
if array.size(predictions) > nearest_Probable_Distance
lastDistance := array.get(distances, math.round(nearest_Probable_Distance * 3 / 4))
array.shift(distances)
array.shift(predictions)
prediction := array.sum(predictions)
getTrend() =>
switch
trenSelection == 'CPMA' => isRational ? isRationalSigma ? sigmoid(CPMA) : rationalQuadratic(CPMA, 8, 0.5, 25) : CPMA
trenSelection == 'FRMA' => isRational ? isRationalSigma ? sigmoid(FRMA) : rationalQuadratic(FRMA, 8, 0.5, 25) : FRMA
trenSelection == 'RationalQuad' => rqkValue
trend = getTrend()
bool isBullishSmooth = close >= trend
bool isBearishSmooth = close <= trend
[avgrationalQuad, plotColor] = CSM.getGradientColor(isFirstbar = barstate.isfirst, src = trend, length = trenSelection == 'CPMA' ? cpmaLength : trenSelection == 'FRMA' ? frmaLength : 14, isSmoothed = false)
plot(avgrationalQuad, color=plotColor, linewidth=2, title="Trend")
signal := prediction > 0 and (enableFilter ? isBullishSmooth : true) ? 1 : prediction < 0 and (enableFilter ? isBearishSmooth : true) ? -1 : nz(signal[1])
isDifferentSignalType = ta.change(signal)
isEarlySignalFlip = ta.change(signal) and (ta.change(signal[1]) or ta.change(signal[2]) or ta.change(signal[3]))
isBuySignal = signal == 1
isSellSignal = signal == -1
isNewBuySignal = isBuySignal and isDifferentSignalType
isNewSellSignal = isSellSignal and isDifferentSignalType
get_PredictionColor(prediction) =>
arrColor = array.new_color(0)
array.push(arrColor, #FF0000) // 0
array.push(arrColor, #FF1000) // 1
array.push(arrColor, #FF2000) // 2
array.push(arrColor, #FF3000) // 3
array.push(arrColor, #FF4000) // 4
array.push(arrColor, #FF5000) // 5
array.push(arrColor, #FF6000) // 6
array.push(arrColor, #FF7000) // 7
array.push(arrColor, #FF8000) // 8
array.push(arrColor, #FF9000) // 9
array.push(arrColor, #0AAA00) // 10
array.push(arrColor, #1BBB10) // 11
array.push(arrColor, #2CCC20) // 12
array.push(arrColor, #3DDD30) // 13
array.push(arrColor, #5EEE50) // 14
array.push(arrColor, #6FFF60) // 15
array.push(arrColor, #7ABF70) // 16
array.push(arrColor, #8BCF80) // 17
array.push(arrColor, #9CDF90) // 18
array.push(arrColor, #90DFF9) // 19
distVal = prediction >= 10 or prediction <= -10 ? isNewSellSignal ? -10 : 9 : prediction
index = int(distVal + 10)
predictColor = array.get(arrColor, index)
[predictColor, index]
[predictColor, index] = get_PredictionColor(prediction)
plotshape(isNewBuySignal ? low : na, 'Buy', shape.labelup, location.belowbar, color=predictColor, size=size.small, offset=0) // Plot a 'Buy' label shape with the predicted color
plotshape(isNewSellSignal ? high : na, 'Sell', shape.labeldown, location.abovebar, color=predictColor, size=size.small, offset=0) // Plot a 'Sell' label shape with the predicted color
// MACD
fast_length = input(title="Fast Length", defval=100, group="MACD")
slow_length = input(title="Slow Length", defval=200, group="MACD")
signal_length = input.int(title="Signal Smoothing", minval = 1, maxval = 50, defval = 50, group="MACD")
sma_source = input.string(title="Oscillator MA Type", defval="EMA", options=["SMA", "EMA"], group="MACD")
sma_signal = input.string(title="Signal Line MA Type", defval="EMA", options=["SMA", "EMA"], group="MACD")
fast_ma = sma_source == "SMA" ? ta.sma(close, fast_length) : ta.ema(close, fast_length)
slow_ma = sma_source == "SMA" ? ta.sma(close, slow_length) : ta.ema(close, slow_length)
macd = fast_ma - slow_ma
macd_signal = sma_signal == "SMA" ? ta.sma(macd, signal_length) : ta.ema(macd, signal_length)
hist = macd - macd_signal
macd_bull = hist >= 0
macd_bear = hist < 0
// Strategy
long = isNewBuySignal and macd_bull
short = isNewSellSignal and macd_bear
longSl = ta.lowest(low, slLookBack)
shortSl = ta.highest(high, slLookBack)
var cnt = 1
if long
inn = close
longTp = inn + tpCoef * (inn - longSl)
if not reverse
id = "long " + str.tostring(cnt)
strategy.entry(id, strategy.long)
strategy.exit("exitLong " + str.tostring(cnt), id, stop=longSl, limit=longTp)
else
id = "short " + str.tostring(cnt)
strategy.entry(id, strategy.short)
strategy.exit("exitShort " + str.tostring(cnt), id, stop=longTp, limit=longSl)
cnt += 1
if short
inn = close
shortTp = inn - tpCoef * (shortSl - inn)
if not reverse
id = "short " + str.tostring(cnt)
strategy.entry(id, strategy.short)
strategy.exit("exitShort " + str.tostring(cnt), id, stop=shortSl, limit=shortTp)
else
id = "long " + str.tostring(cnt)
strategy.entry(id, strategy.long)
strategy.exit("exitLong " + str.tostring(cnt), id, stop=shortTp, limit=shortSl)
cnt += 1