-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathTNItest.m
49 lines (37 loc) · 1.14 KB
/
TNItest.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
% test my TNI projection.
d = 2;
cvx_wins = 0;
kmax = 100;
for k=1:kmax
% k
choi_ground = rand(d*d,d*d)-rand(d*d,d*d)+1.0j*rand(d*d,d*d)-1.0j*rand(d*d,d*d);
choi_ground_vec = reshape(choi_ground,[],1);
choi_ground_vec = PSD_project(choi_ground_vec);
choi_ground = reshape(choi_ground_vec,[],d*d);
% eig(partial_trace(choi_ground))
cvx_solver mosek
% cvx_precision best
cvx_begin quiet
variable cvx_solution(d*d,d*d) complex
minimize(norm(cvx_solution-choi_ground,'fro'))
subject to
eye(d) - partial_trace(cvx_solution) == semidefinite(d,d);
cvx_end
cvx_solution;
GK_solution = reshape(TNI_project(choi_ground_vec),[],d*d);
discrepancies(k) = norm(GK_solution-cvx_solution,'fro');
cvx_distance = norm(choi_ground-cvx_solution,'fro');
gk_distance = norm(GK_solution-choi_ground,'fro');
if cvx_distance < gk_distance
cvx_wins = cvx_wins + 1;
end
% cvx_win_percentage = cvx_wins/k
end
figure;
h1 = histogram(discrepancies); hold on;
% h2 = histogram(cvx_distances);
% h3 = histogram(gk_distances);
% legend('discrepancy','cvx dist','TNI dist')
xlabel('discrepancy between cvx and TNI project');
ylabel('counts')
mean(discrepancies)