-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathPM_minimal.m
71 lines (59 loc) · 1.84 KB
/
PM_minimal.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
function [ A ] = PM_minimal( d )
%PM_minimal constructs a prepare/measure matrix featuring a minimal set of
% d^2 pure states
% and
% d^2 pairs of positive operators that sum to the identity
% (i.e. a POVM with d^2 elements)
%. 2d^4 operators in all, each of size dxd.
preparations = cell(1,d*d);
i = 1;
for k=1:d
E = zeros(d,1);
E(k)=1;
preparations{i} = E*E';
measurements{i} = E*E'/d^2;
i = i+1;
end
for k=1:d-1
for n=k+1:d
E = zeros(d,1);
E(k) = 1/sqrt(2);
E(n) = 1/sqrt(2);
preparations{i} = E*E';
measurements{i} = E*E'/d^2;
i = i+1;
end
end
for k=1:d-1
for n=k+1:d
E = zeros(d,1);
E(k) = 1/sqrt(2);
E(n) = 1.0j/sqrt(2);
preparations{i} = E*E';
measurements{i} = E*E'/d^2; % to ensure proper normalisation
i = i+1;
end
end
% % make into a POVM by using complementary effects (each pair sums to
% I/d^2 and there are d^2 such pairs)
num_measurements = length(measurements);
for i=1:num_measurements
measurements{num_measurements+i} = eye(d)/d^2-measurements{i};
end
% construct I/O matrix
i = 1;
num_measurements = length(measurements);
num_preparations = length(preparations);
A = zeros(num_measurements*num_preparations,d*d*d*d);
for r=1:num_preparations
for e=1:num_measurements
E = measurements{e};
rho = preparations{r};
row = reshape(kron(conj(rho),E'),[],1)';
A(i,:) = row;
i = i+1;
end
end
% A = sparse(A./(d*d)); % this normalisation is such that sum_ij p_ij = 1
A = sparse(A); % this normalisation is such that sum_j p_ij = 1
end