-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAlexNetPreTrained.py
127 lines (94 loc) · 4.46 KB
/
AlexNetPreTrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Imports
from torchvision.datasets import ImageFolder
from torch.utils.data import DataLoader
from torchvision.transforms import ToTensor, Resize, Normalize
from torchvision import transforms
import torch
import os
import torchvision
import torch.nn as nn # All neural network modules, nn.Linear, nn.Conv2d, BatchNorm, Loss functions
import torch.optim as optim # For all Optimization algorithms, SGD, Adam, etc.
import torch.nn.functional as F # All functions that don't have any parameters
from torch.utils.data import (
DataLoader,
) # Gives easier dataset managment and creates mini batches
import torchvision.datasets as datasets # Has standard datasets we can import in a nice way
import torchvision.transforms as transforms # Transformations we can perform on our dataset
root_dir = os.path.join(os.path.dirname(__file__), 'PreTrained_Format_Images')
#Transform for our dataset to be able to be fed into alexNet
trainTransforms = transforms.Compose([Resize((224, 224)),ToTensor(),Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])])
# Set device
device = 'cuda' if torch.cuda.is_available() else 'cpu'
# Hyperparameters
num_classes = 3
learning_rate = 0.0001
batch_size = 4
num_epochs = 5
# Simple Identity class that let's input pass without changes
class Identity(nn.Module):
def __init__(self):
super(Identity, self).__init__()
def forward(self, x):
return x
model = torchvision.models.alexnet(pretrained = True) # Load pretrain model & modify it
model.classifier[6] = torch.nn.Linear(model.classifier[6].in_features, 3) #Edits last layer to only output 2 classes, wood and plastic
model.to(device)
# Load Data
train_dataset = ImageFolder(root = os.path.join(root_dir, 'train'),transform= trainTransforms)
train_loader = DataLoader(dataset=train_dataset, batch_size=batch_size, shuffle=True)
test_dataset = ImageFolder(root = os.path.join(root_dir, 'val'),transform= trainTransforms)
test_loader = DataLoader(dataset=test_dataset, batch_size=batch_size, shuffle=True)
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train Network
for epoch in range(num_epochs):
losses = []
for batch_idx, (data, targets) in enumerate(train_loader):
# Get data to cuda if possible
data = data.to(device=device)
targets = targets.to(device=device)
# forward
scores = model(data)
loss = criterion(scores, targets)
losses.append(loss.item())
# backward
optimizer.zero_grad()
loss.backward()
# gradient descent or adam step
optimizer.step()
print(f"Cost at epoch {epoch} is {sum(losses)/len(losses):.5f}")
# Check accuracy on training & test to see how good our model
def check_accuracy(loader, model):
#if loader.dataset.train:
# print("Checking accuracy on training data")
#else:
print("Checking accuracy on test data")
num_correct = 0
num_samples = 0
model.eval()
with torch.no_grad():
for x, y in loader:
x = x.to(device=device)
y = y.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
num_correct += (predictions == y).sum()
num_samples += predictions.size(0)
print(
f"Got {num_correct} / {num_samples} with accuracy {float(num_correct)/float(num_samples)*100:.2f}"
)
model.train()
check_accuracy(test_loader, model)
single_Dataset = ImageFolder(root = os.path.join(root_dir, 'singleimage'),transform= trainTransforms)
single_loader = DataLoader(dataset=single_Dataset, batch_size=1, shuffle=True)
for x, y in single_loader:
x = x.to(device=device)
scores = model(x)
_, predictions = scores.max(1)
if predictions == 0:
print("Random Image")
elif predictions == 1:
print("Plastic")
elif predictions == 2:
print("Wood")