Skip to content

Schedule

geohackweek edited this page Nov 7, 2016 · 14 revisions

home

DAY 1: Monday November 14

Time Activity / Session Location Instructor(s)
8:15 am - 9:00 am Breakfast (provided) Data Science Studio All
9:00 am - 9:30 am Icebreaker and team networking to share project ideas Data Science Studio All
9:30 am - 11:00 am git/GitHub DSS Meeting Room Bernease Herman, Catherine Kuhn
9:30 am - 11:00 am git/GitHub DSS Seminar Room Ben Weinstein, Ian Rose
11:15 am - 12:15 pm Python basics, docker, conda, Jupyter Notebooks DSS Seminar Room Ian Rose, Landung "Don" Setiawan, Allison Smith, Rob Fatland
11:15 am - 12:15 pm Python basics, docker, conda, Jupyter Notebooks DSS Meeting Room Ian Rose, Landung "Don" Setiawan, Allison Smith, Rob Fatland
12:15 pm - 1:15 pm Lunch (provided) Data Science Studio All
1:30 pm - 3:00 pm Python tools for raster data DSS Seminar Room James Douglass, Ben Hudson
1:30 pm - 3:00 pm Python tools for vector data DSS Meeting Room Emilio Mayorga, Landung "Don" Setiawan
3:30 pm - 4:25 pm Google Earth Engine (GEE) introductory (lecture) Anderson 223 Tyler Erikson, Nick Clinton
4:25 pm - 4:35 pm Break
4:35 pm - 5:50 pm GEE Code Editor GUI / Javascript API (hands-on) Odegaard Undergraduate Library 136 Tyler Erickson, Nick Clinton
6:00 pm Welcome reception (dinner and drinks, provided) Data Science Studio

DAY 2: Tuesday November 15

Time Activity / Session Location Instructor
8:15 am - 9:00 am Breakfast (provided) Data Science Studio All
9:00 am - 10:30 am Python tools for vector data DSS Meeting Room Emilio Mayorga, Landung "Don" Setiawan
9:00 am - 10:30 am Python tools for raster data DSS Seminar Room James Douglass, Ben Hudson
10:45 am - 12:15 pm Earth Engine Python API + Jupyter DSS Meeting Room Tyler Erickson
10:45 am - 12:15 pm Advanced concepts with the Javascript API DSS Seminar Room Nick Clinton
12:30 pm - 2:00 pm Lunch (provided) Data Science Studio All
2:00 pm - 5:30 pm Open session and GEE API hackathon Data Science Studio Tyler Erickson, Nick Clinton, Catherine Kuhn
evening free

DAY 3: Wednesday November 16

Time Activity / Session Location Instructor
8:15 am - 9:00 am Breakfast (provided) Data Science Studio All
9:00 am - 10:30 am Multidimensional array analysis DSS Meeting Room Joe Hamman, Anthony Arendt
9:00 am - 10:30 am Geoscience visualization tools DSS Seminar Room Randy LeVeque, Ben Hudson, Rob Fatland
10:45 am - 12:15 pm Multidimensional array analysis DSS Meeting Room Joe Hamman, Anthony Arendt
11:45 am - 12:15 pm Geoscience visualization tools DSS Seminar Room Randy LeVeque, Ben Hudson, Rob Fatland
12:30 pm - 1:30 pm Lunch (provided) Data Science Studio All
1:30 pm - 4:00 pm open session and project work Data Science Studio All
4:30 pm - 5:30 pm School of Environmental and Forest Science (SEFS) Seminar forestry building
5:30 pm - 7 pm SEFS reception forestry building

DAY 4: Thursday November 17

Time Activity / Session Location Instructor
8:15 am - 9:00 am Breakfast (provided) Data Science Studio All
9:00 am - 10:30 am Access to remote geospatial datasets using Python DSS Seminar room Emilio Mayorga, Landung "Don" Setiawan
9:00 am - 10:30 am Deployment of cloud computing services DSS Meeting room Rob Fatland, Amanda Tan
10:45 am - 12:15 pm Access to remote geospatial datasets using Python DSS Seminar room Emilio Mayorga, Landung "Don" Setiawan
10:45 am - 12:15 pm Deployment of cloud computing services DSS Seminar room Rob Fatland, Amanda Tan
12:30 pm - 1:30 pm Lunch (provided) Data Science Studio All
1:30 pm - 5:00 pm Open session and project work Data Science Studio All

Friday November 18

Time Activity / Session Location Instructor
8:15 am - 9:00 am Breakfast (provided) Data Science Studio All
9:00 am - 10:30 am finalizing project work DSS Seminar room All
10:30 am - 11:00 am coffee
11:00 am - 11:30 am reproducibility discussion DSS Meeting Room David Beck
11:30 am - 12:30 pm team breakout to discover future directions DSS Meeting Room All
12:30 pm - 1:30 pm Lunch (provided) Data Science Studio All
1:30 pm - 4:00 pm Project presentations DSS Seminar Room All
Clone this wiki locally