-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdigit_process.py
187 lines (148 loc) · 5.59 KB
/
digit_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import cv2
import numpy as np
from get_digit import recognize
def fillCol(img, c_i, c_j, col, curCol):
# run dfs and fill color
stack = [(c_i, c_j)]
count = 0
while len(stack) != 0:
i, j = stack[-1]
stack.pop()
if i < 0 or i >= img.shape[0] or j < 0 or j >= img.shape[1] or int(img[i][j]) == int(col) or int(img[i][j]) != curCol:
continue
img[i, j] = col
stack.append((i+1, j))
stack.append((i-1, j))
stack.append((i, j+1))
stack.append((i, j-1))
count+=1
return img, count
def shiftImage(img5, i, j) :
img6 = np.zeros(img5.shape, np.uint8)
for a in range(img5.shape[0]) :
for b in range(img5.shape[1]) :
if img5[a][b] != 0 and a+i>0 and b+j>0 and a+i<img5.shape[0] and b+j<img5.shape[1] :
img6[a+i][b+j] = img5[a][b]
return img6
def removeBoundaries(img) :
l = img.shape[0]
for i in range(l) :
img, x = fillCol(img, i, 0, 0, 255)
img, x = fillCol(img, 0, i, 0, 255)
img, x = fillCol(img, l-i-1, l-1, 0, 255)
img, x = fillCol(img, l-1, l-i-1, 0, 255)
return img
def get_img(src):
img = cv2.imread(src)
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(imgray, (11, 11), 0)
th = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_MEAN_C,\
cv2.THRESH_BINARY,5,2)
kernel = np.array([[0, 1, 0], [1, 1, 1], [0, 1, 0]], np.uint8)
erosion = cv2.erode(th, kernel, iterations = 1)
contours, hierarchy = cv2.findContours(erosion, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
maxA = cv2.contourArea(contours[0], True)
max_i = 0
for i in range(1, len(contours)) :
area = cv2.contourArea(contours[i], True)
if area > maxA :
maxA = area
max_i = i
mask = np.zeros(imgray.shape,np.uint8)
cv2.drawContours(mask, contours, max_i, 255, -1)
pixelpoints = np.nonzero(mask)
X = pixelpoints[1]
Y = pixelpoints[0]
SUM = X + Y
DIFF = X - Y
a1 = np.argmax(SUM)
a2 = np.argmin(SUM)
a3 = np.argmax(DIFF)
a4 = np.argmin(DIFF)
sudL = int((X[a3] - X[a2] + X[a1] - X[a4] + Y[a1] - Y[a3] + Y[a4] - Y[a2] - 40)/2)
cl = int(sudL/9)
sudL = 9 * cl
pts1 = np.float32([[X[a2]+5, Y[a2]+5], [X[a3]-5, Y[a3]+5], [X[a1]-5, Y[a1]-5], [X[a4]+5, Y[a4]-5]])
pts2 = np.float32([[0,0],[sudL,0],[sudL,sudL],[0,sudL]])
M = cv2.getPerspectiveTransform(pts1,pts2)
dst = cv2.warpPerspective(imgray,M,(sudL,sudL))
eh_ = cv2.equalizeHist(dst)
th_ = np.sum(eh_)/(eh_.size*4)
ret20, img_final = cv2.threshold(eh_, th_, 255, cv2.THRESH_BINARY_INV)
img_final = cv2.resize(img_final, (720, 720))
return img_final
def get_matrix(src):
digits = np.full((9, 9), 0)
image = get_img(src)
copy = image
sudL, height = image.shape
cl = sudL//9
count = 0
for i in range(0, sudL-cl+1, cl):
for j in range(0, sudL-cl+1, cl):
cell2 = removeBoundaries(copy[i:i+cl, j:j+cl])
whites = cell2 == 255
zs = np.count_nonzero(whites)
count += 1
if zs*100.0/cell2.size > 1 :
pad = int(cl*0.12)
cell = image[i+pad:i+cl-pad, j+pad:j+cl-pad]
eh = cv2.equalizeHist(cell)
#th = np.sum(eh)/(eh.size*4)
img2 = cv2.resize(eh, (28, 28))
# cv2.imshow("image", img2)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
ar = 0
y_m = 0
x_m = 0
for y in range(img2.shape[0]):
for x in range(img2.shape[1]):
if img2[y][x] == 255:
img2, num = fillCol(img2, y, x, 17, 255)
if num > ar:
ar = num
y_m = y
x_m = x
img2, num_ = fillCol(img2, y_m, x_m, 255, 17)
for y in range(img2.shape[0]):
for x in range(img2.shape[1]):
if img2[y][x] == 17:
img2, num = fillCol(img2, y, x, 0, 17)
ret, img3 = cv2.threshold(img2, 200, 255, cv2.THRESH_BINARY)
pps = np.nonzero(img3)
X_ = pps[1]
Y_ = pps[0]
ym = (np.min(Y_) + np.max(Y_))/2
xm = (np.min(X_) + np.max(X_))/2
rows,cols = img2.shape
img2 = shiftImage(img2, int(rows/2-ym), int(cols/2-xm))
result_array = recognize(img2)
val = np.argmax(result_array)
# print (val)
# cv2.imshow("image", img2)
# cv2.waitKey(0)
# cv2.destroyAllWindows()
# neurons[0] = np.divide(img2[img2 > -1], 255.0)
# neurons = feedforward(neurons, weights, biases)
# # print(neurons[2])
# # cv2.imshow("image", img2)
# # cv2.waitKey(0)
# # cv2.destroyAllWindows()
digits[int(i/cl)][int(j/cl)] = val
else :
digits[int(i/cl)][int(j/cl)] = -1
return digits
def test(src):
digits = np.full((9, 9), 0)
cell = cv2.imread(src)
cell = cv2.cvtColor(cell, cv2.COLOR_BGR2GRAY)
eh = cv2.equalizeHist(cell)
#th = np.sum(eh)/(eh.size*4)
ret, img2 = cv2.threshold(eh, 23, 255, cv2.THRESH_BINARY_INV)
img2 = cv2.resize(img2, (28, 28))
result_array = recognize(img2)
val = np.argmax(result_array)
return val
if __name__ == "__main__":
print(get_matrix("sud.jpg"))