forked from pratham16cse/AggForecaster
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
1102 lines (963 loc) · 41 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from torch.utils.data import DataLoader
import torch
from torch.distributions.normal import Normal
import numpy as np
import os
from collections import OrderedDict
import pywt
import pandas as pd
import re
import time
import shutil
from tsmoothie.smoother import SpectralSmoother, ExponentialSmoother
from statsmodels.tsa.seasonal import seasonal_decompose
import time
from data.synthetic_dataset import create_synthetic_dataset, create_sin_dataset, SyntheticDataset
from data.real_dataset import parse_ECG5000, parse_Traffic, parse_Taxi, parse_Traffic911, parse_gc_datasets, parse_weather, parse_bafu, parse_meteo, parse_azure, parse_ett, parse_sin_noisy, parse_Solar, parse_etthourly, parse_m4hourly, parse_m4daily, parse_taxi30min, parse_aggtest, parse_electricity, parse_foodinflation, parse_foodinflationmonthly
to_float_tensor = lambda x: torch.FloatTensor(x.copy())
to_long_tensor = lambda x: torch.FloatTensor(x.copy())
def copy_and_overwrite(from_path, to_path):
if os.path.exists(to_path):
shutil.rmtree(to_path)
shutil.copytree(from_path, to_path)
def clean_trial_checkpoints(result):
for trl in result.trials:
trl_paths = result.get_trial_checkpoints_paths(trl,'metric')
for path, _ in trl_paths:
shutil.rmtree(path)
def add_metrics_to_dict(
metrics_dict, model_name, metric_mse, metric_dtw, metric_tdi, metric_crps, metric_mae,
metric_smape
):
#if model_name not in metrics_dict:
# metrics_dict[model_name] = dict()
metrics_dict['mse'] = metric_mse
metrics_dict['dtw'] = metric_dtw
metrics_dict['tdi'] = metric_tdi
metrics_dict['crps'] = metric_crps
metrics_dict['mae'] = metric_mae
metrics_dict['smape'] = metric_smape
return metrics_dict
def add_base_metrics_to_dict(
metrics_dict, agg_method, K, model_name, metric_mse, metric_dtw, metric_tdi, metric_crps, metric_mae,
):
if agg_method not in metrics_dict:
metrics_dict[agg_method] = {}
if K not in metrics_dict[agg_method]:
metrics_dict[agg_method][K] = {}
if model_name not in metrics_dict[agg_method][K]:
metrics_dict[agg_method][K][model_name] = {}
metrics_dict[agg_method][K][model_name]['mse'] = metric_mse
metrics_dict[agg_method][K][model_name]['dtw'] = metric_dtw
metrics_dict[agg_method][K][model_name]['tdi'] = metric_tdi
metrics_dict[agg_method][K][model_name]['crps'] = metric_crps
metrics_dict[agg_method][K][model_name]['mae'] = metric_mae
#metrics_dict[model_name]['smape'] = metric_smape
return metrics_dict
def write_arr_to_file(
output_dir, inf_model_name, inputs, targets, pred_mu, pred_std, pred_d, pred_v
):
# Files are saved in .npy format
np.save(os.path.join(output_dir, inf_model_name + '_' + 'pred_mu'), pred_mu)
np.save(os.path.join(output_dir, inf_model_name + '_' + 'pred_std'), pred_std)
np.save(os.path.join(output_dir, inf_model_name + '_' + 'pred_d'), pred_d)
np.save(os.path.join(output_dir, inf_model_name + '_' + 'pred_v'), pred_v)
for fname in os.listdir(output_dir):
if fname.endswith('targets.npy'):
break
else:
np.save(os.path.join(output_dir, 'inputs'), inputs)
np.save(os.path.join(output_dir, 'targets'), targets)
def write_aggregate_preds_to_file(
output_dir, base_model_name, agg_method, level, inputs, targets, pred_mu, pred_std
):
# Files are saved in .npy format
sep = '__'
model_str = base_model_name + sep + agg_method + sep + str(level)
agg_str = agg_method + sep + str(level)
np.save(os.path.join(output_dir, model_str + sep + 'pred_mu'), pred_mu.detach().numpy())
np.save(os.path.join(output_dir, model_str + sep + 'pred_std'), pred_std.detach().numpy())
suffix = agg_str + sep + 'targets.npy'
for fname in os.listdir(output_dir):
if fname.endswith(suffix):
break
else:
np.save(os.path.join(output_dir, agg_str + sep + 'inputs'), inputs.detach().numpy())
np.save(os.path.join(output_dir, agg_str + sep + 'targets'), targets.detach().numpy())
class Normalizer(object):
def __init__(self, data, norm_type):
super(Normalizer, self).__init__()
self.norm_type = norm_type
self.N = len(data)
if norm_type in ['same']:
pass
elif norm_type in ['zscore_per_series']:
self.mean = map(lambda x: x.mean(0, keepdims=True), data) #data.mean(1, keepdims=True)
self.std = map(lambda x: x.std(0, keepdims=True), data) #data.std(1, keepdims=True)
#import ipdb ; ipdb.set_trace()
self.mean = torch.stack(list(self.mean), dim=0)
self.std = torch.stack(list(self.std), dim=0)
self.std = self.std.clamp(min=1., max=None)
elif norm_type in ['zeroshift_per_series']:
self.first = map(lambda x: x[0:1], data) #data.mean(1, keepdims=True)
self.std = map(lambda x: x.std(0, keepdims=True), data)
#import ipdb ; ipdb.set_trace()
self.first = torch.stack(list(self.first), dim=0)
self.std = torch.stack(list(self.std), dim=0)
self.std = self.std.clamp(min=1., max=None)
elif norm_type in ['min_per_series']:
self.first = map(lambda x: x.min(0, keepdims=True)[0], data)
self.std = map(lambda x: x.std(0, keepdims=True), data)
#import ipdb ; ipdb.set_trace()
self.first = torch.stack(list(self.first), dim=0)
self.std = torch.stack(list(self.std), dim=0)
self.std = self.std.clamp(min=1., max=None)
elif norm_type in ['log']:
pass
elif norm_type in ['gaussian_copula']:
ns = data.shape[1] * 1.
#self.delta = 1. / (4*np.power(ns, 0.25) * np.power(np.pi*np.log(ns), 0.5))
self.delta = 1e-5
data_sorted, indices = data.sort(1)
data_sorted_uq = torch.unique(data_sorted, sorted=True, dim=-1)
counts = torch.cat(
[(data_sorted == data_sorted_uq[:, i:i+1]).sum(dim=1, keepdims=True) for i in range(data_sorted_uq.shape[1])],
dim=1
)
#import ipdb; ipdb.set_trace()
self.x = data_sorted_uq
self.x = torch.cat([self.x, 1.1*data_sorted[..., -1:]], dim=1)
self.y = torch.cumsum(counts, 1)*1./data.shape[1]
self.y = self.y.clamp(self.delta, 1.0-self.delta)
self.y = torch.cat([self.y, torch.ones((data.shape[0], 1))*self.delta], dim=1)
self.m = (self.y[..., 1:] - self.y[..., :-1]) / (self.x[..., 1:] - self.x[..., :-1])
self.m = torch.maximum(self.m, torch.ones_like(self.m)*1e-4)
self.c = self.y[..., :-1]
#import ipdb; ipdb.set_trace()
def normalize(self, data, ids=None, is_var=False):
if ids is None:
ids = torch.arange(self.N)
if self.norm_type in ['same']:
data_norm = data
elif self.norm_type in ['zscore_per_series']:
if not is_var:
data_norm = (data - self.mean[ids]) / self.std[ids]
else:
data_norm = data / self.std[ids]
elif self.norm_type in ['zeroshift_per_series', 'min_per_series']:
if not is_var:
data_norm = (data - self.first[ids]) / self.std[ids]
else:
data_norm = data / self.std[ids]
elif self.norm_type in ['log']:
data_norm = torch.log(data)
elif self.norm_type in ['gaussian_copula']:
# Piecewise linear fit of CDF
indices = torch.searchsorted(self.x[ids], data).clamp(0, self.x.shape[-1])
m = torch.gather(self.m[ids], -1, indices)
c = torch.gather(self.c[ids], -1, indices)
x_prev = torch.gather(self.x[ids], -1, indices)
data_norm = (data - x_prev) * m + c
data_norm = data_norm.clamp(self.delta, 1.0-self.delta)
#import ipdb; ipdb.set_trace()
# ICDF in standard normal
dist = Normal(0., 1.)
data_norm = dist.icdf(data_norm)
#import ipdb; ipdb.set_trace()
return data_norm.unsqueeze(-1)
def unnormalize(self, data, ids=None, is_var=False):
#return data # TODO Watch this
if ids is None:
ids = torch.arange(self.N)
if self.norm_type in ['same']:
data_unnorm = data
elif self.norm_type in ['log']:
data_unnorm = torch.exp(data)
elif self.norm_type in ['zscore_per_series']:
if not is_var:
data_unnorm = data * self.std[ids] + self.mean[ids]
else:
data_unnorm = data * self.std[ids]
elif self.norm_type in ['zeroshift_per_series', 'min_per_series']:
if not is_var:
data_unnorm = data * self.std[ids] + self.first[ids]
else:
data_unnorm = data * self.std[ids]
elif self.norm_type in ['gaussian_copula']:
# CDF in standard normal
dist = Normal(0., 1.)
data = dist.cdf(data)
# Inverse piecewise linear fit of CDF
indices = torch.searchsorted(self.y[ids], data).clamp(0, self.x.shape[-1])
m = torch.gather(self.m[ids], -1, indices)
c = torch.gather(self.c[ids], -1, indices)
x_prev = torch.gather(self.x[ids], -1, indices)
data_unnorm = (data - c) / m + x_prev
return data_unnorm
def normalize(data, norm=None, norm_type=None, is_var=False):
if norm is None:
assert norm_type is not None
if norm_type in ['same']: # No normalization
scale = np.ones_like(np.mean(data, axis=(1), keepdims=True))
shift = np.zeros_like(scale)
norm = np.concatenate([shift, scale], axis=-1)
if norm_type in ['avg']: # mean of entire data
norm = np.mean(data, axis=(0, 1))
scale = np.ones_like(np.mean(data, axis=(1), keepdims=True)) * norm
shift = np.zeros_like(scale)
norm = np.concatenate([shift, scale], axis=-1)
elif norm_type in ['avg_per_series']: # per-series mean
scale = np.mean(data, axis=(1), keepdims=True)
shift = np.zeros_like(scale)
norm = np.concatenate([shift, scale], axis=-1)
elif norm_type in ['quantile90']: # 0.9 quantile of entire data
scale = np.quantile(data, 0.90, axis=(0, 1))
shift = np.zeros_like(scale)
norm = np.concatenate([shift, scale], axis=-1)
elif norm_type in ['std']: # std of entire data
scale = np.std(data, axis=(0,1))
shift = np.zeros_like(scale)
norm = np.concatenate([shift, scale], axis=-1)
elif norm_type in ['zscore_per_series']: # z-score at each series
mean = np.mean(data, axis=(1), keepdims=True) # per-series mean
std = np.std(data, axis=(1), keepdims=True) # per-series std
norm = np.concatenate([mean, std], axis=-1)
if is_var:
data_norm = data * 1.0 / norm[ ... , :, 1:2 ]
else:
data_norm = (data - norm[...,:,0:1])* 1.0/norm[...,:,1:2]
#data_norm = data * 10.0/norm
#import ipdb
#ipdb.set_trace()
return data_norm, norm
def unnormalize(data, norm, is_var):
if is_var:
data_unnorm = data * norm[ ... , : , 1:2 ]
else:
data_unnorm = data * norm[ ... , : , 1:2 ] + norm[ ... , : , 0:1 ]
return data_unnorm
sqz = lambda x: np.squeeze(x, axis=-1)
expand = lambda x: np.expand_dims(x, axis=-1)
def shift_timestamp(ts, offset):
result = ts + offset * ts.freq
return pd.Timestamp(result, freq=ts.freq)
def get_date_range(start, seq_len):
end = shift_timestamp(start, seq_len)
full_date_range = pd.date_range(start, end, freq=start.freq)
return full_date_range
def get_granularity(freq_str: str):
"""
Splits a frequency string such as "7D" into the multiple 7 and the base
granularity "D".
Parameters
----------
freq_str
Frequency string of the form [multiple][granularity] such as "12H", "5min", "1D" etc.
"""
freq_regex = r'\s*((\d+)?)\s*([^\d]\w*)'
m = re.match(freq_regex, freq_str)
assert m is not None, "Cannot parse frequency string: %s" % freq_str
groups = m.groups()
multiple = int(groups[1]) if groups[1] is not None else 1
granularity = groups[2]
return multiple, granularity
class TimeFeature:
"""
Base class for features that only depend on time.
"""
def __init__(self, normalized: bool = True):
self.normalized = normalized
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
pass
def __repr__(self):
return self.__class__.__name__ + '()'
class FourrierDateFeatures(TimeFeature):
def __init__(self, freq: str) -> None:
# reocurring freq
freqs = [
'month',
'day',
'hour',
'minute',
'weekofyear',
'weekday',
'dayofweek',
'dayofyear',
'daysinmonth',
]
assert freq in freqs
self.freq = freq
def __call__(self, index: pd.DatetimeIndex) -> np.ndarray:
values = getattr(index, self.freq)
num_values = max(values) + 1
steps = [x * 2.0 * np.pi / num_values for x in values]
#return np.vstack([np.cos(steps), np.sin(steps)])
return np.stack([np.cos(steps), np.sin(steps)], axis=-1)
def time_features_from_frequency_str(freq_str):
multiple, granularity = get_granularity(freq_str)
features = {
'M': ['weekofyear'],
'W': ['daysinmonth', 'weekofyear'],
'D': ['dayofweek'],
'B': ['dayofweek', 'dayofyear'],
#'H': ['hour', 'dayofweek'],
'H': ['hour'],
#'min': ['minute', 'hour', 'dayofweek'],
'min': ['minute', 'hour'],
'T': ['minute', 'hour', 'dayofweek'],
}
assert granularity in features, f"freq {granularity} not supported"
feature_classes= [
FourrierDateFeatures(freq=freq) for freq in features[granularity]
]
return feature_classes
def fit_slope_with_indices(seq, K, is_var):
x = np.reshape(np.ones_like(seq), (-1, K))
x = np.cumsum(x, axis=1) - 1
y = np.reshape(seq, (-1, K))
m_x = np.mean(x, axis=1, keepdims=True)
m_y = np.mean(y, axis=1, keepdims=True)
s_xy = np.sum((x-m_x)*(y-m_y), axis=1, keepdims=True)
s_xx = np.sum((x-m_x)**2, axis=1, keepdims=True)
#w = s_xy/s_xx
a = (x - m_x) / s_xx
#import ipdb
#ipdb.set_trace()
if is_var:
w = np.sum(a**2 * y, axis=1, keepdims=True)
else:
w = np.sum(a * y, axis=1, keepdims=True)
return w
def aggregate_seqs_sum(seqs, K, is_var):
agg_seqs = []
for i, seq in enumerate(seqs):
#print(i, len(seqs))
assert len(seq)%K == 0
if is_var:
agg_seq = [(1./(K*K)) * np.sum(seq[i:i+K], axis=0) for i in range(0, len(seq), K)]
else:
agg_seq = [np.sum(seq[i:i+K], axis=0) for i in range(0, len(seq), K)]
agg_seqs.append(agg_seq)
return np.array(agg_seqs)
def aggregate_seqs_slope(seqs, K, is_var=False):
agg_seqs = []
for seq in seqs:
assert len(seq)%K == 0
agg_seq = fit_slope_with_indices(seq, K, is_var)
agg_seqs.append(agg_seq)
return np.array(agg_seqs)
def aggregate_data_wavelet(
wavelet_levels, train_input, train_target, dev_input, dev_target,
test_input, test_target
):
agg_train_input = pywt.wavedec(sqz(train_input), 'haar', level=wavelet_levels, mode='periodic')
agg_train_target = pywt.wavedec(sqz(train_target), 'haar', level=wavelet_levels, mode='periodic')
agg_dev_input = pywt.wavedec(sqz(dev_input), 'haar', level=wavelet_levels, mode='periodic')
agg_dev_target = pywt.wavedec(sqz(dev_target), 'haar', level=wavelet_levels, mode='periodic')
agg_test_input = pywt.wavedec(sqz(test_input), 'haar', level=wavelet_levels, mode='periodic')
agg_test_target = pywt.wavedec(sqz(test_target), 'haar', level=wavelet_levels, mode='periodic')
agg_train_input = [expand(x) for x in agg_train_input]
agg_train_target = [expand(x) for x in agg_train_target]
agg_dev_input = [expand(x) for x in agg_dev_input]
agg_dev_target = [expand(x) for x in agg_dev_target]
agg_test_input = [expand(x) for x in agg_test_input]
agg_test_target = [expand(x) for x in agg_test_target]
#import ipdb
#ipdb.set_trace()
return (
agg_train_input, agg_train_target, agg_dev_input, agg_dev_target,
agg_test_input, agg_test_target
)
def get_a(agg_type, K):
if K == 1:
return torch.ones(1, dtype=torch.float)
if agg_type in ['sum']:
a = 1./K * torch.ones(K)
elif agg_type in ['slope']:
x = torch.arange(K, dtype=torch.float)
m_x = x.mean()
s_xx = ((x-m_x)**2).sum()
a = (x - m_x) / s_xx
elif agg_type in ['diff']:
l = K // 2
a_ = torch.ones(K)
a = 1./K * torch.cat([-1.*a_[:l], a_[l:]], dim=0)
return a
def aggregate_window(y, a, is_var, v=None):
if is_var == False:
y_a = (a*y).sum(dim=1, keepdims=True)
else:
w_d = (a**2*y).sum(dim=1, keepdims=True)
if v is not None:
#w_v = (((a.unsqueeze(-1)*v).sum(-1)**2)).sum(dim=1, keepdims=True)
#av = a.unsqueeze(-1)*v
#av = torch.matmul(av, av.transpose(-2,-1))
#w_v = (((av).sum(-1)**2)).sum(dim=1, keepdims=True)
w_v = (((a.unsqueeze(-1)*v)**2).sum(-1)).sum(dim=1, keepdims=True)
y_a = w_d + w_v
else:
y_a = w_d
return y_a
def aggregate_data(y, agg_type, K, is_var, a=None, v=None):
# y shape: batch_size x N
# if a need not be recomputed in every call, pass a vector directly
# if v is not None, it is used as a V vector of low-rank multivariate gaussian
# v shape: batch_size x N x args.v_dim
bs, N = y.shape[0], y.shape[1]
if a is None:
a = get_a(agg_type, K)
a = a.unsqueeze(0).repeat(bs, 1)
y_agg = []
for i in range(0, N, K):
y_w = y[..., i:i+K]
if v is not None:
v_w = v[..., i:i+K, :]
y_a = aggregate_window(y_w, a, is_var, v=v_w)
else:
y_a = aggregate_window(y_w, a, is_var)
y_agg.append(y_a)
y_agg = torch.cat(y_agg, dim=1)#.unsqueeze(-1)
return y_agg
class TimeSeriesDatasetOfflineAggregate(torch.utils.data.Dataset):
"""docstring for TimeSeriesDatasetOfflineAggregate"""
def __init__(
self, data, enc_len, dec_len, aggregation_type, K,
feats_info, which_split, tsid_map=None, input_norm=None, target_norm=None,
norm_type=None, feats_norms=None, train_obj=None
):
super(TimeSeriesDatasetOfflineAggregate, self).__init__()
assert enc_len%K == 0
assert dec_len%K == 0
print('Creating dataset:', aggregation_type, K)
self._base_enc_len = enc_len
self._base_dec_len = dec_len
#self.num_values = len(data[0]['target'][0])
self.which_split = which_split
self.aggregation_type = aggregation_type
self.K = K
self.input_norm = input_norm
self.target_norm = target_norm
self.norm_type = norm_type
self.feats_info = feats_info
self.tsid_map = tsid_map
self.feats_norms = feats_norms
#self.train_obj = train_obj
#self.generate_a()
self.a = get_a(self.aggregation_type, self.K)
self.S = 1
# Perform aggregation if level != 1
st = time.time()
data_agg = []
for i in range(0, len(data)):
#print(i, len(data))
ex = data[i]['target']
ex_f = data[i]['feats']
ex_len = len(ex)
ex = ex[ ex_len%self.K: ]
ex_f = ex_f[ ex_len%self.K: ]
#bp = np.arange(1,len(ex), 1)
if which_split in ['train']:
bp = [(i, self.K) for i in np.arange(0, len(ex)-self.K+1, self.S)]
elif which_split in ['dev', 'test']:
bp = [(i, self.K) for i in np.arange(0, len(ex), self.K)]
if self.K != 1:
ex_agg, ex_f_agg = [], []
for b in range(len(bp)):
s, e = bp[b][0], bp[b][0]+bp[b][1]
ex_agg.append(
aggregate_window(
ex[s:e].unsqueeze(0), self.a, False,
)[0]
)
#if self.aggregation_type in ['sum']:
# for b in range(len(bp)):
# s, e = bp[b][0], bp[b][0]+bp[b][1]
# import ipdb ; ipdb.set_trace()
# ex_agg.append(self.aggregate_data(ex[s:e]))
#elif self.aggregation_type in ['slope']:
# for b in range(len(bp)):
# s, e = bp[b][0], bp[b][0]+bp[b][1]
# ex_agg.append(self.aggregate_data_slope(ex[s:e]))
#elif self.aggregation_type in ['haar']:
# for b in range(len(bp)):
# s, e = bp[b][0], bp[b][0]+bp[b][1]
# ex_agg.append(self.aggregate_data_haar(ex[s:e]))
# Aggregating features
for b in range(len(bp)):
s, e = bp[b][0], bp[b][0]+bp[b][1]
ex_f_agg.append(self.aggregate_feats(ex_f[s:e]))
#if which_split in ['dev']:
# import ipdb ; ipdb.set_trace()
data_agg.append(
{
'target':torch.cat(ex_agg, dim=0),
'feats':torch.stack(ex_f_agg, dim=0),
}
)
else:
ex_agg = ex
ex_f_agg = ex_f
data_agg.append(
{
'target':ex_agg,
'feats':ex_f_agg,
}
)
et = time.time()
print(which_split, self.aggregation_type, self.K, 'total time:', f'{et-st:.3}')
#if self.K>1 and which_split in ['dev']:
# import ipdb ; ipdb.set_trace()
if self.input_norm is None:
assert norm_type is not None
data_for_norm = []
for i in range(0, len(data)):
ex = data_agg[i]['target']
data_for_norm.append(torch.FloatTensor(ex))
#data_for_norm = to_float_tensor(data_for_norm).squeeze(-1)
self.input_norm = Normalizer(data_for_norm, norm_type=self.norm_type)
self.target_norm = self.input_norm
del data_for_norm
self.feats_norms = {}
for j in range(len(self.feats_info)):
card = self.feats_info[j][0]
if card == 0:
feat_for_norm = []
for i in range(0, len(data)):
ex = data_agg[i]['feats'][:, j]
feat_for_norm.append(torch.FloatTensor(ex))
f_norm = Normalizer(feat_for_norm, norm_type='zscore_per_series')
self.feats_norms[j] = f_norm
self.data = data_agg
self.indices = []
for i in range(0, len(self.data)):
if which_split in ['train']:
j = 0
while j < len(self.data[i]['target']):
if j+self.mult*self.base_enc_len+self.base_dec_len <= len(self.data[i]['target']):
self.indices.append((i, j))
j += 1
#if self.K>1:
# import ipdb ; ipdb.set_trace()
elif which_split == 'dev':
j = len(self.data[i]['target']) - self.enc_len - self.dec_len
self.indices.append((i, j))
#if self.K>1:
# import ipdb ; ipdb.set_trace()
elif which_split == 'test':
j = len(self.data[i]['target']) - self.enc_len - self.dec_len
self.indices.append((i, j))
@property
def base_enc_len(self):
return self._base_enc_len
@property
def base_dec_len(self):
return self._base_dec_len
@property
def enc_len(self):
if self.K > 1:
el = (self._base_enc_len // self.K) * self.mult
else:
el = self._base_enc_len
#el = self._base_enc_len
return el
@property
def dec_len(self):
if self.K > 1:
dl = self._base_dec_len // self.K
else:
dl = self._base_dec_len
return dl
@property
def mult(self):
if self.K > 1: mult = 2
else: mult = 1
return mult
@property
def input_size(self):
#input_size = len(self.data[0]['target'][0])
input_size = 1
#if self.use_feats:
# # Multiplied by 2 because of sin and cos
# input_size += len(self.data[0]['feats'][0])
for idx, (card, emb) in self.feats_info.items():
if card != -1:
input_size += emb
return input_size
@property
def output_size(self):
#output_size = len(self.data[0]['target'][0])
output_size = 1
return output_size
def __len__(self):
return len(self.indices)
def __getitem__(self, idx):
#print(self.indices)
ts_id = self.indices[idx][0]
pos_id = self.indices[idx][1]
if self.which_split in ['train']:
stride, mult = self.K//self.S, self.mult
el = mult * self.base_enc_len // self.S
dl = self.base_dec_len // self.S
elif self.which_split in ['dev', 'test']:
stride, mult = 1, 1
el = self.enc_len
dl = self.dec_len
ex_input = self.data[ts_id]['target'][ pos_id : pos_id+el : stride ]
ex_target = self.data[ts_id]['target'][ pos_id+el : pos_id+el+dl : stride ]
#print('after', ex_input.shape, ex_target.shape, ts_id, pos_id)
if self.tsid_map is None:
mapped_id = ts_id
else:
mapped_id = self.tsid_map[ts_id]
ex_input = self.input_norm.normalize(ex_input, mapped_id)#.unsqueeze(-1)
ex_target = self.target_norm.normalize(ex_target, mapped_id)#.unsqueeze(-1)
ex_input_feats = self.data[ts_id]['feats'][ pos_id : pos_id+el : stride ]
ex_target_feats = self.data[ts_id]['feats'][ pos_id+el : pos_id+el+dl : stride ]
ex_input_feats_norm = []
ex_target_feats_norm = []
for i in range(len(self.feats_info)):
if self.feats_norms.get(i, -1) != -1:
ex_input_feats_norm.append(self.feats_norms[i].normalize(
ex_input_feats[:, i], mapped_id)
)
ex_target_feats_norm.append(self.feats_norms[i].normalize(
ex_target_feats[:, i], mapped_id)
)
else:
ex_input_feats_norm.append(ex_input_feats[:, i:i+1])
ex_target_feats_norm.append(ex_target_feats[:, i:i+1])
ex_input_feats = torch.cat(ex_input_feats_norm, dim=-1)
ex_target_feats = torch.cat(ex_target_feats_norm, dim=-1)
#i_res = self.enc_len - len(ex_input)
#ex_input = torch.cat(
# [torch.zeros([i_res] + list(ex_input.shape[1:])), ex_input],
# dim=0
#)
#ex_input_feats = torch.cat(
# [torch.zeros([i_res] +list(ex_input_feats.shape[1:])), ex_input_feats],
# dim=0
#)
#print(ex_input.shape, ex_target.shape, ex_input_feats.shape, ex_target_feats.shape)
return (
ex_input, ex_target,
ex_input_feats, ex_target_feats,
mapped_id,
torch.FloatTensor([ts_id, pos_id])
)
def collate_fn(self, batch):
num_items = len(batch[0])
batched = [[] for _ in range(len(batch[0]))]
for i in range(len(batch)):
for j in range(len(batch[i])):
batched[j].append(torch.tensor(batch[i][j]))
batched_t = []
for i, b in enumerate(batched):
batched_t.append(torch.stack(b, dim=0))
#print(i)
#batched = [torch.stack(b, dim=0) for b in batched]
return batched_t
def aggregate_data(self, values):
return values.mean(dim=0)
def generate_a(self):
x = torch.arange(self.K, dtype=torch.float)
m_x = x.mean()
s_xx = ((x-m_x)**2).sum()
self.a = (x - m_x) / s_xx
def aggregate_data_slope(self, y):
return (self.a * y).sum()
#def aggregate_data_slope(self, y, compute_b=False):
# x = torch.arange(y.shape[0], dtype=torch.float)
# m_x = x.mean()
# s_xx = ((x-m_x)**2).sum()
# #m_y = np.mean(y, axis=0)
# #s_xy = np.sum((x-m_x)*(y-m_y), axis=0)
# #w = s_xy/s_xx
# a = (x - m_x) / s_xx
# w = (a*y).sum()
# if compute_b:
# b = m_y - w*m_x
# return w, b
# else:
# return w
def aggregate_feats(self, feats):
feats_agg = []
for j in range(len(self.feats_info)):
card = self.feats_info[j][0]
if card != 0:
feats_agg.append(feats[0,j])
else:
feats_agg.append(feats[:, j].mean())
feats_agg = torch.stack(feats_agg, dim=0)
return feats_agg
def aggregate_data_haar(self, values):
i = values.shape[0]//2
return values[i:].mean()-values[:i].mean()
def aggregate_data_wavelet(self, values, K):
coeffs = pywt.wavedec(sqz(values), 'haar', level=self.wavelet_levels, mode='periodic')
coeffs = [expand(x) for x in coeffs]
coeffs = coeffs[-(K-1)]
return coeffs
def get_time_features(self, start, seqlen):
end = shift_timestamp(start, seqlen)
full_date_range = pd.date_range(start, end, freq=start.freq)
chunk_range = full_date_range[ pos_id : pos_id+self._base_enc_len ]
def get_avg_date(self, date_range):
return date_range.mean(axis=0)
def get_avg_feats(self, time_feats):
return np.mean(time_feats, axis=0)
def calculate_error(self, segment):
w, b = self.aggregate_data_slope(segment, compute_b=True)
x = np.expand_dims(np.arange(len(segment)), axis=1)
segment_pred = w*x+b
return np.max(np.abs(segment - segment_pred)) # Using max error
def smooth(self, series):
#smoother = SpectralSmoother(smooth_fraction=0.4, pad_len=10)
smoother = ExponentialSmoother(window_len=10, alpha=0.15)
series = np.concatenate((np.zeros((10, 1)), series), axis=0)
series_smooth = np.expand_dims(smoother.smooth(series[:, 0]).smooth_data[0], axis=-1)
return series_smooth
class DataProcessor(object):
"""docstring for DataProcessor"""
def __init__(self, args):
super(DataProcessor, self).__init__()
self.args = args
if args.dataset_name in ['synth']:
# parameters
N = 500
sigma = 0.01
# Load synthetic dataset
(
X_train_input, X_train_target,
X_dev_input, X_dev_target,
X_test_input, X_test_target,
train_bkp, dev_bkp, test_bkp,
) = create_synthetic_dataset(N, args.N_input, args.N_output, sigma)
elif args.dataset_name in ['sin']:
N = 100
sigma = 0.01
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map
) = create_sin_dataset(N, args.N_input, args.N_output, sigma)
elif args.dataset_name in ['ECG5000']:
(
X_train_input, X_train_target,
X_dev_input, X_dev_target,
X_test_input, X_test_target,
train_bkp, dev_bkp, test_bkp,
data_train, data_dev, data_test
) = parse_ECG5000(args.N_input, args.N_output)
elif args.dataset_name in ['Traffic']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map
) = parse_Traffic(args.N_input, args.N_output)
elif args.dataset_name in ['Taxi']:
(
X_train_input, X_train_target,
X_dev_input, X_dev_target,
X_test_input, X_test_target,
train_bkp, dev_bkp, test_bkp,
data_train, data_dev, data_test
) = parse_Taxi(args.N_input, args.N_output)
elif args.dataset_name in ['Traffic911']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info, coeffs_info
) = parse_Traffic911(args.N_input, args.N_output)
elif args.dataset_name in ['Exchange', 'Wiki']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map
) = parse_gc_datasets(args.dataset_name, args.N_input, args.N_output)
elif args.dataset_name in ['weather']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map
) = parse_weather(args.dataset_name, args.N_input, args.N_output)
elif args.dataset_name in ['bafu']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map
) = parse_bafu(args.dataset_name, args.N_input, args.N_output)
elif args.dataset_name in ['meteo']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map
) = parse_meteo(args.dataset_name, args.N_input, args.N_output)
elif args.dataset_name in ['azure']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_azure(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['ett']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_ett(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['sin_noisy']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info, coeffs_info
) = parse_sin_noisy(args.dataset_name, args.N_input, args.N_output)
elif args.dataset_name in ['Solar']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_Solar(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['etthourly']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_etthourly(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['m4hourly']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info, coeffs_info
) = parse_m4hourly(args.dataset_name, args.N_input, args.N_output)
elif args.dataset_name in ['m4daily']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info, coeffs_info
) = parse_m4daily(args.dataset_name, args.N_input, args.N_output)
elif args.dataset_name in ['taxi30min']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_taxi30min(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['aggtest']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_aggtest(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['electricity']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_electricity(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['foodinflation']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_foodinflation(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
elif args.dataset_name in ['foodinflationmonthly']:
(
data_train, data_dev, data_test,
dev_tsid_map, test_tsid_map,
feats_info
) = parse_foodinflationmonthly(args.dataset_name, args.N_input, args.N_output, t2v_type=args.t2v_type)
if args.use_feats:
assert 'feats' in data_train[0].keys()
self.data_train = data_train
self.data_dev = data_dev
self.data_test = data_test
self.dev_tsid_map = dev_tsid_map
self.test_tsid_map = test_tsid_map
self.feats_info = feats_info