-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_baseline_model.py
509 lines (450 loc) · 15.9 KB
/
run_baseline_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
import string
import os
import numpy as np
from omegaconf.omegaconf import OmegaConf
from baselines.models import RNNSL
from baselines.spacy_tagging import read_datafile
from evaluation.semeval2021 import f1 ## WRONG F1, ONLY USED FOR OFFSETS
import random
from sklearn.metrics import f1_score
from evaluation.fix_spans import _contiguous_ranges
from keras.utils import to_categorical
from tensorflow.random import set_seed
import argparse
SEED = 2021
def check_for_mismatch(tokens, texts, offset_mapping):
for example in range(len(tokens)):
tokenized_text = tokens[example]
revived_text = [
texts[example][
offset_mapping[example][token][0] : offset_mapping[example][token][1]
]
.lower()
.translate(str.maketrans("", "", string.punctuation))
for token in range(len(tokens[example]))
]
if tokenized_text != revived_text:
print(tokenized_text)
print(revived_text)
exit()
def is_whitespace(c): ##From google-research/bert run_squad.py
if (
c == " "
or c == "\t"
or c == "\r"
or c == "\n"
or ord(c) == 0x202F
or c in string.whitespace
or ord(c) == 160
or ord(c) == 8196
):
return True
return False
def convert_spans_to_token_labels(text, spans=None, test=False):
token_labels = []
token_to_offsets_map = []
i = 0
new_text = ""
for c in text:
if is_whitespace(c):
new_text += " "
else:
new_text += c
text = new_text
while i < len(text):
if is_whitespace(text[i]):
i += 1
continue
else:
# print(i,text[i])
token_to_offsets_map.append(
[
i,
]
)
if not test:
if i in spans:
token_labels.append(2) ##Toxic
else:
token_labels.append(1) ##Non-Toxic
while i < len(text) and not is_whitespace(text[i]):
i += 1
token_to_offsets_map[-1].append(i) ##Not Inclusive
if not test:
assert len(text.split()) == len(token_labels)
return token_labels, token_to_offsets_map
else:
return token_to_offsets_map
def clean_predicted_text(
text, offsets
): ##Remove punctuations from outputs beginning or end
new_offsets = []
pred_ranges = _contiguous_ranges(offsets)
for range_ in pred_ranges:
start = range_[0]
end = range_[-1]
while start < end:
if (
text[start] in string.punctuation
or is_whitespace(text[start])
or text[end] in string.punctuation
or is_whitespace(text[end])
):
if text[start] in string.punctuation or is_whitespace(text[start]):
start += 1
if text[end] in string.punctuation or is_whitespace(text[end]):
end -= 1
else:
break
new_offsets += list(range(start, end + 1))
return new_offsets
def get_text_spans(text, offsets):
text_spans = []
ranges = _contiguous_ranges(offsets)
for range_ in ranges:
text_spans.append(text[range_[0] : range_[1] + 1])
return text_spans
def dev():
train_file = "./data/tsd_train.csv"
dev_file = "./data/tsd_trial.csv"
train = read_datafile(train_file)
dev = read_datafile(dev_file)
reduced_train = []
for i in train:
if i not in dev:
reduced_train.append(i)
## Tune Threshold on Dev
reduced_train_token_labels, reduced_train_offset_mapping = list(
zip(
*[
convert_spans_to_token_labels(text, spans)
for spans, text in reduced_train
]
)
)
dev_token_labels, dev_offset_mapping = list(
zip(*[convert_spans_to_token_labels(text, spans) for spans, text in dev])
)
reduced_train_tokens = [
[
word.lower().translate(
str.maketrans("", "", string.punctuation)
) ## Remove Punctuation and make into lower case
for word in text.split()
]
for spans, text in reduced_train
]
dev_tokens = [
[
word.lower().translate(
str.maketrans("", "", string.punctuation)
) ## Remove Punctuation and make into lower case
for word in text.split()
]
for spans, text in dev
]
reduced_train_token_labels_oh = [
to_categorical(train_token_label, num_classes=3)
for train_token_label in reduced_train_token_labels
]
dev_token_labels_oh = [
to_categorical(dev_token_label, num_classes=3)
for dev_token_label in dev_token_labels
]
rnnsl = RNNSL()
run_df = rnnsl.fit(
reduced_train_tokens,
reduced_train_token_labels_oh,
validation_data=(dev_tokens, dev_token_labels_oh),
)
run_df.to_csv("RNNSL_Run.csv", index=False)
# rnnsl.set_up_preprocessing(reduced_train_tokens)
# rnnsl.model = rnnsl.build()
val_data = (dev_tokens, dev_token_labels)
rnnsl.tune_threshold(val_data, f1_score)
print("=" * 80)
print("Threshold: ", rnnsl.threshold)
token_predictions = rnnsl.get_toxic_offsets(
val_data[0],
) ## Word Level Toxic Offsets
print("=" * 80)
print(
"F1_score Word Wise on Dev Tokens :",
np.mean(
[
f1_score(token_predictions[i], val_data[1][i][:192])
for i in range(len(val_data[1]))
]
),
)
print("=" * 80)
# dev_offset_mapping #map token index to offsets
offset_predictions = []
for example in range(len(dev_tokens)):
offset_predictions.append([])
for token in range(len(dev_tokens[example][:192])):
if token_predictions[example][token] == rnnsl.toxic_label:
offset_predictions[-1] += list(
range(
dev_offset_mapping[example][token][0],
dev_offset_mapping[example][token][1],
)
)
dev_spans = [spans for spans, text in dev]
dev_texts = [text for spans, text in dev]
new_offset_predictions = [
clean_predicted_text(text, offsets)
for offsets, text in zip(offset_predictions, dev_texts)
]
for i in range(20):
ground_offsets = dev_spans[i]
old_offsets = offset_predictions[i]
new_offsets = new_offset_predictions[i]
text = dev_texts[i]
print("Text: ", text)
print("Ground: ", get_text_spans(text, ground_offsets))
print("Preds: ", get_text_spans(text, old_offsets))
print("Clean Preds: ", get_text_spans(text, new_offsets))
avg_dice_score = np.mean(
[f1(preds, gold) for preds, gold in zip(new_offset_predictions, dev_spans)]
)
print("=" * 80)
print("Avg Dice Score on Dev: ", avg_dice_score)
print("=" * 80)
def predict(train_file, dev_file, test_files, max_length, save_dir, max_epochs=100):
# train_file = "./data/tsd_train.csv"
# dev_file = "./data/tsd_trial.csv"
# test_file = "./data/tsd_test.csv"
# clean_train_file = "./data/clean_train.csv"
# clean_dev_file = "./data/clean_trial.csv"
train = read_datafile(train_file)
dev = read_datafile(dev_file)
# reduced_train = []
# for i in train:
# if i not in dev:
# reduced_train.append(i)
## Tune Threshold on Dev
train_token_labels, train_offset_mapping = list(
zip(*[convert_spans_to_token_labels(text, spans) for spans, text in train])
)
dev_token_labels, dev_offset_mapping = list(
zip(*[convert_spans_to_token_labels(text, spans) for spans, text in dev])
)
train_tokens = [
[
word.lower().translate(
str.maketrans("", "", string.punctuation)
) ## Remove Punctuation and make into lower case
for word in text.split()
]
for spans, text in train
]
dev_tokens = [
[
word.lower().translate(
str.maketrans("", "", string.punctuation)
) ## Remove Punctuation and make into lower case
for word in text.split()
]
for spans, text in dev
]
train_token_labels_oh = [
to_categorical(train_token_label, num_classes=3)
for train_token_label in train_token_labels
]
dev_token_labels_oh = [
to_categorical(dev_token_label, num_classes=3)
for dev_token_label in dev_token_labels
]
rnnsl = RNNSL(max_epochs=max_epochs)
run_df = rnnsl.fit(
train_tokens,
train_token_labels_oh,
validation_data=(dev_tokens, dev_token_labels_oh),
)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
run_df.to_csv(os.path.join(save_dir, "RNNSL_Run.csv"), index=False)
# rnnsl.set_up_preprocessing(reduced_train_tokens)
# rnnsl.model = rnnsl.build()
val_data = (dev_tokens, dev_token_labels)
rnnsl.tune_threshold(val_data, f1_score)
print("=" * 80)
print("Threshold: ", rnnsl.threshold)
with open(os.path.join(save_dir, "thresh.txt"), "w") as f:
f.write(str(rnnsl.threshold))
token_predictions = rnnsl.get_toxic_offsets(
val_data[0],
) ## Word Level Toxic Offsets
print("=" * 80)
print(
"F1_score Word Wise on Dev Tokens :",
np.mean(
[
f1_score(token_predictions[i], val_data[1][i][:max_length])
for i in range(len(val_data[1]))
]
),
)
print("=" * 80)
# dev_offset_mapping #map token index to offsets
offset_predictions = []
for example in range(len(dev_tokens)):
offset_predictions.append([])
for token in range(len(dev_tokens[example][:max_length])):
if token_predictions[example][token] == rnnsl.toxic_label:
offset_predictions[-1] += list(
range(
dev_offset_mapping[example][token][0],
dev_offset_mapping[example][token][1],
)
)
dev_spans = [spans for spans, text in dev]
dev_texts = [text for spans, text in dev]
new_offset_predictions = [
clean_predicted_text(text, offsets)
for offsets, text in zip(offset_predictions, dev_texts)
]
# for i in range(20):
# ground_offsets = dev_spans[i]
# old_offsets = offset_predictions[i]
# new_offsets = new_offset_predictions[i]
# text = dev_texts[i]
# print("Text: ", text)
# print("Ground: ", get_text_spans(text, ground_offsets))
# print("Preds: ", get_text_spans(text, old_offsets))
# print("Clean Preds: ", get_text_spans(text, new_offsets))
avg_dice_score = np.mean(
[f1(preds, gold) for preds, gold in zip(new_offset_predictions, dev_spans)]
)
print("=" * 80)
print("Avg Dice Score on Dev: ", avg_dice_score)
print("=" * 80)
## Test predictions
# print("=" * 80)
# print("Training on both train and dev for predictions!")
# print("=" * 80)
# combo = train + dev
# combo_token_labels, combo_offset_mapping = list(
# zip(*[convert_spans_to_token_labels(text, spans) for spans, text in combo])
# )
# combo_tokens = [
# [
# word.lower().translate(
# str.maketrans("", "", string.punctuation)
# ) ## Remove Punctuation and make into lower case
# for word in text.split()
# ]
# for spans, text in combo
# ]
# combo_token_labels_oh = [
# to_categorical(combo_token_label, num_classes=3)
# for combo_token_label in combo_token_labels
# ]
# rnnsl_2 = RNNSL(max_epochs=10)
# pred_df = rnnsl_2.fit(combo_tokens, combo_token_labels_oh)
# pred_df.to_csv("RNNSL_Pred.csv", index=False)
# rnnsl_2.threshold = rnnsl.threshold ##Replace with tuned threshold
# rnnsl_2.set_up_preprocessing(combo_tokens)
# rnnsl_2.model = rnnsl_2.build()
rnnsl.model.save(os.path.join(save_dir, "model"))
for test_file in test_files:
print(f"Predicting on {test_file}")
test = read_datafile(test_file)
test_token_labels, test_offset_mapping = list(
zip(*[convert_spans_to_token_labels(text, spans) for spans, text in test])
)
test_tokens = [
[
word.lower().translate(
str.maketrans("", "", string.punctuation)
) ## Remove Punctuation and make into lower case
for word in text.split()
]
for spans, text in test
]
test_token_labels_oh = [
to_categorical(test_token_label, num_classes=3)
for test_token_label in test_token_labels
]
test_spans = [spans for spans, text in test]
test_texts = [text for spans, text in test]
check_for_mismatch(test_tokens, test_texts, test_offset_mapping)
final_token_predictions = rnnsl.get_toxic_offsets(test_tokens)
print("=" * 80)
print(
f"F1_score Word Wise on {test_file} Tokens :",
np.mean(
[
f1_score(
final_token_predictions[i], test_token_labels[i][:max_length]
)
for i in range(len(test_token_labels))
]
),
)
print("=" * 80)
final_offset_predictions = []
for example in range(len(test_tokens)):
final_offset_predictions.append([])
for token in range(
len(test_tokens[example][:max_length])
): # max_length: 192
if final_token_predictions[example][token] == rnnsl.toxic_label:
final_offset_predictions[-1] += list(
range(
test_offset_mapping[example][token][0],
test_offset_mapping[example][token][1],
)
)
new_final_offset_predictions = [
clean_predicted_text(text, offsets)
for offsets, text in zip(final_offset_predictions, test_texts)
]
avg_dice_score = np.mean(
[
f1(preds, gold)
for preds, gold in zip(new_final_offset_predictions, test_spans)
]
)
print("=" * 80)
print("Avg Dice Score on Dev: ", avg_dice_score)
print("=" * 80)
with open(
os.path.join(
save_dir, f"eval_scores_{test_file.split('/')[-1].split('.')[0]}.txt"
),
"w",
) as f:
f.write(str(avg_dice_score))
# for i in range(20):
# old_offsets = final_offset_predictions[i]
# new_offsets = new_final_offset_predictions[i]
# text = test_texts[i]
# print("Text: ", text)
# print("Preds: ", get_text_spans(text, old_offsets))
# print("Clean Preds: ", get_text_spans(text, new_offsets))
with open(
os.path.join(
save_dir, f"spans-pred-{test_file.split('/')[-1].split('.')[0]}.txt"
),
"w",
) as f:
for i, spans in enumerate(new_final_offset_predictions):
f.write(f"{i}\t{str(spans)}\n")
if __name__ == "__main__":
random.seed(SEED)
np.random.seed(SEED)
set_seed(SEED)
parser = argparse.ArgumentParser(
prog="run_baseline_model.py", description="Train Baseline RNNSL Model."
)
parser.add_argument(
"--config",
type=str,
action="store",
help="The configuration for model training/evaluation",
)
args = parser.parse_args()
config = OmegaConf.load(args.config)
predict(**dict(config))