-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathns_on_torus.py
213 lines (175 loc) · 6.49 KB
/
ns_on_torus.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import dolfin as df
from surfaise import TorusMap, SphereMap
from surfaise.common.io import (
Timeseries, save_checkpoint, load_checkpoint,
load_parameters)
from surfaise.common.cmd import (
mpi_max, parse_command_line, info_blue, info_cyan)
from surfaise.common.utilities import QuarticPotential, TimeStepSelector
from surfaise.ics import StripedIC, RandomIC
import os
import ufl
import numpy as np
parameters = dict(
R=30., # Radius
r=10.,
res=100, # Resolution
dt=1e-1,
rho=1.0,
mu=1.0,
restart_folder=None,
folder="results_ns_torus",
t_0=0.0,
tstep=0,
T=2000,
checkpoint_intv=50,
verbose=True,
# init_mode="random",
init_mode="nothing",
alpha=0.0,
)
cmd_kwargs = parse_command_line()
parameters.update(**cmd_kwargs)
if parameters["restart_folder"]:
load_parameters(parameters, os.path.join(
parameters["restart_folder"], "parameters.dat"))
parameters.update(**cmd_kwargs)
R = parameters["R"]
r = parameters["r"]
res = parameters["res"]
dt = TimeStepSelector(parameters["dt"])
rho = df.Constant(parameters["rho"])
mu = df.Constant(parameters["mu"])
# geo_map = TorusMap(R, r)
geo_map = SphereMap(R, eps=1e-1)
geo_map.initialize(res, restart_folder=parameters["restart_folder"])
R_el = df.FiniteElement("R", geo_map.ref_mesh.ufl_cell(), 0)
W = geo_map.mixed_space((geo_map.ref_vel, geo_map.ref_el, R_el))
# Define trial and test functions
du = df.TrialFunction(W)
v, q, rt = df.TestFunctions(W)
# Define functions
w = df.TrialFunction(W)
w_ = df.Function(W, name="u_") # current solution
w_1 = df.Function(W, name="u_1") # solution from previous converged step
# Split mixed functions
u, p, r = df.split(w)
u_, p_, r_ = df.split(w_)
u_1, p_1, r_1 = df.split(w_1)
# Create intial conditions
if parameters["restart_folder"] is None:
init_mode = parameters["init_mode"]
if init_mode == "random":
w_init = RandomIC(w_, amplitude=10, dims=2, degree=1)
elif init_mode == "nothing":
w_init = RandomIC(w_, amplitude=0.001, dims=2, degree=1)
else:
exit("Unknown IC")
w_1.interpolate(w_init)
w_.assign(w_1)
else:
load_checkpoint(parameters["restart_folder"], w_, w_1)
# f = df.Constant((0., 0.))
f = df.Expression(("0.1*exp(-pow(x[1]-1.57,2)/2*0.01)", "0."), degree=2)
# Define some UFL indices:
i, j, k, l = ufl.Index(), ufl.Index(), ufl.Index(), ufl.Index()
m_NS = (rho / dt * geo_map.g_ab[i, j] * (u_[i]-u_1[i]) * v[j]
+ rho * geo_map.g_ab[i, j] * u_[k] *
geo_map.CovD10(u_)[k, i] * v[j]
+ mu * geo_map.g_ab[i, k] * geo_map.gab[j, l] *
geo_map.CovD10(u_)[i, j] * geo_map.CovD10(v)[k, l]
+ mu * geo_map.K * geo_map.g_ab[i, j] * u_[i] * v[j]
- p_ * geo_map.CovD10(v)[i, i]
+ q * geo_map.CovD10(u_)[i, i]
- f[i]*v[i])
F = geo_map.form(m_NS)
s_max = geo_map.r_ref_max["s"]-geo_map.eps
s_min = geo_map.r_ref_min["s"]+geo_map.eps
t_min = geo_map.r_ref_min["t"]+geo_map.eps
# def poles(x, on_boundary):
# return on_boundary and bool(x[1] <= s_min+df.DOLFIN_EPS_LARGE
# or x[1] >= s_max-df.DOLFIN_EPS_LARGE)
# u_bc = df.DirichletBC(W.sub(0).sub(1), df.Constant(0.),
# poles)
# p_bc = df.DirichletBC(W.sub(1), df.Constant(0.),
# "x[0] < {t_min} && x[1] < {s_min}".format(
# t_min=t_min, s_min=s_min),
# "pointwise")
class Poles(df.SubDomain):
def inside(self, x, on_boundary):
return on_boundary and bool(
x[1] <= s_min+df.DOLFIN_EPS_LARGE or
x[1] >= s_max-df.DOLFIN_EPS_LARGE
)
boundary = df.MeshFunction("size_t", geo_map.ref_mesh,
geo_map.ref_mesh.topology().dim()-1)
boundary.set_all(0)
poles = Poles()
poles.mark(boundary, 1)
ds = df.Measure("ds", domain=geo_map.ref_mesh,
subdomain_data=boundary)
n = df.FacetNormal(geo_map.ref_mesh)
F_boun = geo_map.g_ab[i, j]*u_[i]*n[j]*rt*ds(1) +\
geo_map.g_ab[i, j]*v[i]*n[j]*r_*ds(1)
F = F + F_boun
J = df.derivative(F, w_, du=w)
problem = df.NonlinearVariationalProblem(F, w_, J=J) #, bcs=[u_bc])
solver = df.NonlinearVariationalSolver(problem)
solver.parameters["newton_solver"]["absolute_tolerance"] = 1e-8
solver.parameters["newton_solver"]["relative_tolerance"] = 1e-5
solver.parameters["newton_solver"]["maximum_iterations"] = 16
# solver.parameters["newton_solver"]["linear_solver"] = "gmres"
# solver.parameters["newton_solver"]["preconditioner"] = "jacobi"
# solver.parameters["newton_solver"]["preconditioner"] = "default"
# solver.parameters["newton_solver"]["krylov_solver"]["nonzero_initial_guess"] = True
# solver.parameters["newton_solver"]["krylov_solver"]["absolute_tolerance"] = 1e-8
# solver.parameters["newton_solver"]["krylov_solver"]["monitor_convergence"] = False
# solver.parameters["newton_solver"]["krylov_solver"]["maximum_iterations"] = 1000
# solver.parameters["linear_solver"] = "gmres"
# solver.parameters["preconditioner"] = "jacobi"
df.parameters["form_compiler"]["optimize"] = True
df.parameters["form_compiler"]["cpp_optimize"] = True
#
t = parameters["t_0"]
tstep = parameters["tstep"]
T = parameters["T"]
# Output file
ts = Timeseries(parameters["folder"], w_,
("u", "p", "r"), geo_map, tstep,
parameters=parameters,
restart_folder=parameters["restart_folder"])
E_kin = 0.5*rho*geo_map.g_ab[i, j]*u_[i]*u_[j]
divu = geo_map.CovD10(u_)[i, i]
U = [sum([geo_map.get_function(xi + "_," + vj)*u_[dj]
for dj, vj in enumerate(geo_map.AXIS_REF)])
for xi in geo_map.AXIS]
ts.add_field(E_kin, "E_kin")
ts.add_field(divu, "divu")
ts.add_field(U, "U")
# Step in time
ts.dump(tstep)
while t < T:
tstep += 1
info_cyan("tstep = {}, time = {}".format(tstep, t))
w_1.assign(w_)
converged = False
while not converged:
try:
solver.solve()
converged = True
except:
info_blue("Did not converge. Chopping timestep.")
dt.chop()
info_blue("New timestep is: dt = {}".format(dt.get()))
# Update time with final dt value
t += dt.get()
if tstep % 1 == 0:
ts.dump(t)
# Assigning timestep size according to grad_mu_max:
# dt_prev = dt.get()
# dt.set(min(0.05/grad_mu_max, T-t))
info_blue("dt = {}".format(dt.get()))
# ts.dump_stats(t, "data")
if tstep % parameters["checkpoint_intv"] == 0 or t >= T:
save_checkpoint(tstep, t, geo_map.ref_mesh,
w_, w_1, ts.folder, parameters)