-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathexercise2home.v
50 lines (44 loc) · 1.57 KB
/
exercise2home.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
(* ignore these directives *)
From mathcomp Require Import mini_ssreflect.
Set Implicit Arguments.
Unset Strict Implicit.
Unset Printing Implicit Defensive.
Add Printing Coercion is_true.
Notation "x '= true'" := (is_true x) (x at level 100, at level 0, only printing).
Remove Printing If bool.
(** *** Exercise 1:
- Write a recursive function taking a natural number to a boolean
value. That value is true iff the number if even
*)
Fixpoint even (n : nat) : bool := (* fill me *)
(*D*) match n with
(*D*) | 0 => true
(*D*) | 1 => false
(*D*) | S p => even (p - 1)
(*D*) end.
(*D*)Fixpoint even' (n : nat) : bool :=
(*D*) match n with
(*D*) | 0 => true
(*D*) | S p => ~~ even' p
(*D*) end.
Eval lazy in even 3. (* = false *)
Eval lazy in even 6. (* = true *)
(** *** Exercise 2:
- State and prove the following boolean formulas:
[b1 && (~~ b2 || b3) = (b1 && ~~ b2) || (b1 && b3)]
*)
Lemma exercise2 (* fill me *)
(*D*) b1 b2 b3 : b1 && (~~ b2 || b3) = ( b1 && ~~ b2) || (b1 && b3).
(*D*)Proof.
(*D*)by case: b1; case: b2; case: b3.
(*D*)Qed.
(** *** Exercise 3 :
Prove Peirce's law using only the rewrite command.
- Hint: use Search to find relevant lemmas about [==>] and [~~]
- Hint: use the lemma that says [(a || b) && a = a]
*)
Search _ (_ ==> _) in MC.Bool. (* All the lemmas you need are in MC.Bool *)
Lemma Peirce p q : ((p ==> q) ==> p) ==> p.
(*D*) Proof. by rewrite implybE negb_imply implybE orbK orNb. Qed.
(** When you are done, click the Download link at the top of the page
and send us your homework by email: [email protected] *)