Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Inference on new Image #12

Open
sindhuatquadrant opened this issue Jan 12, 2023 · 1 comment
Open

Inference on new Image #12

sindhuatquadrant opened this issue Jan 12, 2023 · 1 comment

Comments

@sindhuatquadrant
Copy link

Any pointers or code snippet to run inference on new image would be helpful

Thanks!

@Votess4All
Copy link

I write an infer script for it, hope it will help~~~

# %%
import clip
from utils import *
from datasets import build_dataset
import yaml
from PIL import Image

# %%
# 1. 加载clip预训练模型
cfg = yaml.load(open("./configs/cathouse.yaml", 'r'), Loader=yaml.Loader)
clip_model, preprocess = clip.load(cfg['backbone'])
clip_model.eval()

# 2. 创建一个adapter,并将训练好的权重加载进去
adapter_weight_path = "./caches/cat_house/best_F_16shots.pt"
adapter_weight = torch.load(adapter_weight_path)
adapter = nn.Linear(adapter_weight.shape[1], adapter_weight.shape[0], bias=False).to(clip_model.dtype).cuda()
adapter.weight = adapter_weight 

# %%
from pathlib import Path 

image_dir = "./images/cat_house"
classnames = [sub_dir.name for sub_dir in Path(image_dir).iterdir() if sub_dir.is_dir()]
classnames.sort()

from datasets.cathouse import template

# 针对每一个classname用
clip_weights = clip_classifier(classnames, template, clip_model)

# %%
val_features_path = "/home/pengyuyan819/code/Tip-Adapter/caches/cat_house/val_f.pt"
val_values_path = "/home/pengyuyan819/code/Tip-Adapter/caches/cat_house/val_l.pt"

val_features = torch.load(val_features_path)
val_labels   = torch.load(val_values_path)  

cache_keys_path = "/home/pengyuyan819/code/Tip-Adapter/caches/cat_house/keys_16shots.pt"
cache_values_path = "/home/pengyuyan819/code/Tip-Adapter/caches/cat_house/values_16shots.pt"

cache_keys   = torch.load(cache_keys_path)
cache_values = torch.load(cache_values_path)

# 在验证集上进行参数搜索
best_beta, best_alpha = search_hp(
    cfg, cache_keys, cache_values, 
    val_features, val_labels, clip_weights, adapter=adapter)
print(best_beta, best_alpha)  # 8.7275 4.755,这个应该是要记录下来的

# %%
def extract_image_feature(img_path, preprocess):
    img_arr = preprocess(Image.open(img_path).convert('RGB')).unsqueeze(0)

    # 提取图像特征
    with torch.no_grad():
        image = img_arr.cuda()
        image_feature = clip_model.encode_image(image)
        image_feature /= image_feature.norm(dim=-1, keepdim=True)

    return image_feature

# %%
import glob 
from sklearn.metrics import classification_report

y_pred, y_true = [], []
for i, image_path in enumerate(glob.glob(image_dir+"/**/*.jpg")):

    label = classnames.index(Path(image_path).parents[0].name)

    image_feature = extract_image_feature(
        img_path=image_path,
        preprocess=preprocess
    )
    clip_logits = 100. * image_feature @ clip_weights

    affinity = adapter(image_feature)
    cache_logits = ((-1) * (best_beta - best_beta * affinity)).exp() @ cache_values  # cache_values还做了one-hot encoding
    tip_logits = clip_logits + cache_logits * best_alpha
    pred = torch.argmax(tip_logits).detach().cpu().numpy()

    y_pred.append(int(pred))
    y_true.append(label)

print(classification_report(y_true, y_pred))

# %%
print(classification_report(y_true, y_pred))

# %%
classnames

# %%




Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

2 participants