Skip to content

pedestrian_simple_environment

Julius Bañgate edited this page Apr 16, 2023 · 3 revisions
Annotation 2023-04-16 064607_simpleEnvWalkTo

Path: Plugin models/Pedestrian Skill/models/Simple environment - walk_to.gaml

/***
* Name: pedestrian_simple_environment
* Author: Patrick Taillandier
* Description: 
* Tags: pedestrian, agent_movement, skill, transport
***/

model pedestrian_simple_environment

global {
	float environment_size <- 50.0 parameter: true;
	float margin <- 2.0;
	int nb_obstacles <- 0 parameter: true;
	int nb_people <- 100;
	string scenario <- "frontal crossing" among: ["big crowd", "frontal crossing", "perpendicular crossing"] ;
		
	bool display_free_space <- false parameter: true;
	bool display_force <- false parameter: true;
	bool display_circle_min_dist <- true parameter: true;
	
	float P_shoulder_length <- 0.45 parameter: true;
	float P_proba_detour <- 1.0 parameter: true ;
	bool P_avoid_other <- true parameter: true ;
	float P_obstacle_consideration_distance <- 5.0 parameter: true ;
	float P_pedestrian_consideration_distance <- 5.0 parameter: true ;
	float P_tolerance_waypoint <- 0.1 parameter: true;
	bool P_use_geometry_waypoint <- true parameter: true;
	
	string P_model_type <- "simple" among: ["simple", "advanced"] parameter: true ; 
	
	float P_A_pedestrian_SFM_advanced parameter: true <- 25.0 category: "SFM advanced" ;
	float P_A_obstacles_SFM_advanced parameter: true <- 25.0 category: "SFM advanced" ;
	float P_B_pedestrian_SFM_advanced parameter: true <- 0.5 category: "SFM advanced" ;
	float P_B_obstacles_SFM_advanced parameter: true <- 0.1 category: "SFM advanced" ;
	float P_relaxion_SFM_advanced  parameter: true <- 0.1 category: "SFM advanced" ;
	float P_gama_SFM_advanced parameter: true <- 0.35 category: "SFM advanced" ;
	float P_lambda_SFM_advanced <- 0.1 parameter: true category: "SFM advanced" ;
	float P_minimal_distance_advanced <- 0.5 parameter: true category: "SFM advanced" ;
	
	
	float P_n_prime_SFM_simple parameter: true <- 3.0 category: "SFM simple" ;
	float P_n_SFM_simple parameter: true <- 2.0 category: "SFM simple" ;
	float P_lambda_SFM_simple <- 2.0 parameter: true category: "SFM simple" ;
	float P_gama_SFM_simple parameter: true <- 0.35 category: "SFM simple" ;
	float P_relaxion_SFM_simple parameter: true <- 0.54 category: "SFM simple" ;
	float P_A_pedestrian_SFM_simple parameter: true <- 4.5category: "SFM simple" ;
	
	geometry shape <- square(environment_size);
	geometry free_space <- copy(shape);
	geometry left_space;
	geometry right_space;
	geometry bottom_space; 
	geometry top_space;
	
	float step <- 0.1;
	
	init {
		left_space <- polygon([{0,0}, {0, environment_size}, {environment_size/10, environment_size}, {environment_size/10,0}]);
		right_space <- polygon([{environment_size,0}, {environment_size, environment_size}, {9 * environment_size/10, environment_size}, {9 * environment_size/10,0}]);
		bottom_space <- polygon([{0, environment_size}, {0, 9 * environment_size/10}, {environment_size,9*  environment_size/10}, {environment_size, environment_size}]);	
		top_space <- polygon([{0, 0}, {0, environment_size/10}, {environment_size, environment_size/10}, {environment_size, 0.0}]);	
		
		create obstacle number:nb_obstacles {
			location <- any_location_in(square(8*environment_size/10) at_location {environment_size/2, environment_size/2} scaled_by 0.8);
			shape <- sphere(1+rnd(environment_size/50.0));
			free_space <- free_space - shape;
		}
		
		create people number: nb_people {
			obstacle_consideration_distance <- P_obstacle_consideration_distance;
			obstacle_consideration_distance <- P_obstacle_consideration_distance;
			pedestrian_consideration_distance <- P_pedestrian_consideration_distance;
			shoulder_length <- P_shoulder_length;
			avoid_other <- P_avoid_other;
			proba_detour <- P_proba_detour;
			use_geometry_waypoint <- P_use_geometry_waypoint;
			tolerance_waypoint <- P_tolerance_waypoint;
			
			pedestrian_model <- P_model_type;
			if (pedestrian_model = "simple") {
				A_pedestrians_SFM <- P_A_pedestrian_SFM_simple;
				relaxion_SFM <- P_relaxion_SFM_simple;
				gama_SFM <- P_gama_SFM_simple;
				lambda_SFM <- P_lambda_SFM_simple;
				n_prime_SFM <- P_n_prime_SFM_simple;
				n_SFM <- P_n_SFM_simple;
			} else {
				A_pedestrians_SFM <- P_A_pedestrian_SFM_advanced;
				A_obstacles_SFM <- P_A_obstacles_SFM_advanced;
				B_pedestrians_SFM <- P_B_pedestrian_SFM_advanced;
				B_obstacles_SFM <- P_B_obstacles_SFM_advanced;
				relaxion_SFM <- P_relaxion_SFM_advanced;
				gama_SFM <- P_gama_SFM_advanced;
				lambda_SFM <- P_lambda_SFM_advanced;
				minimal_distance <- P_minimal_distance_advanced;
			}
			
			pedestrian_species <- [people];
			obstacle_species<-[obstacle];
			switch scenario {
				match "frontal crossing" {
					int id <- int(self);
					location <- any_location_in(even(id) ? left_space : right_space);
					current_target <- closest_points_with(location, even(id) ? right_space : left_space)[1];
				} match "perpendicular crossing" {
					int id <- int(self);
					location <- any_location_in(even(id) ? left_space : bottom_space);
					current_target <- closest_points_with(location, (even(id) ? right_space : top_space))[1];
				} match "big crowd" {
					location <- any_location_in(free_space);
					current_target <- any_location_in(world.shape.contour);
				}
			}
		}
	}
	
	reflex end_simulation when: empty(people) {
		do pause;
	}
}

species people skills: [pedestrian] schedules: shuffle(people) {
	rgb color <- rnd_color(255);
	float speed <- 3 #km/#h;
	bool avoid_other <- true;
	point current_target ;
	reflex move when: current_target != nil{
		if (nb_obstacles > 0) {
			do walk_to target: current_target bounds: free_space;
		} else {
			do walk_to target: current_target;
		}
		if (self distance_to current_target < 0.5) {
			do die;
		}
	}
	aspect default {
		if (display_circle_min_dist and minimal_distance > 0) {
				if not empty(people at_distance minimal_distance) {
					draw circle(minimal_distance) color: #red;
				}
				
		}
		draw triangle(shoulder_length) color: color rotate: heading + 90.0;
		
		if  display_force {
		
			loop op over: forces.keys {
				if (species(agent(op)) = obstacle ) {
					draw line([location, location + point(forces[op])]) color: #red end_arrow: 0.1;
				}
				else if ((agent(op)) = self ) {
					draw line([location, location + point(forces[op])]) color: #blue end_arrow: 0.1;
				} 
				else {
					draw line([location, location + point(forces[op])]) color: #green end_arrow: 0.1;
				}
			}
		}	
	}
}

species obstacle {
	aspect default {
		draw shape color: #gray border: #black;
	}
}
experiment big_crowd type: gui {
	float minimum_cycle_duration <- 0.02;
	action _init_ {
		create simulation with: [scenario :: "big crowd", nb_people::500];
	}
	output {
		display map  {
			species obstacle;
			species people;
		}
	}
}

experiment frontal_crossing type: gui {
	float minimum_cycle_duration <- 0.02;
	action _init_ {
		create simulation with: [scenario :: "frontal crossing", nb_people::100];
	}
	output {
		display map  {
			graphics "areas" transparency: 0.5{
				draw right_space color: #green border: #black;
				draw left_space color: #red border: #black;
			}
			species obstacle;
			species people;
		}
	}
}
experiment perpendicular_crossing type: gui {
	float minimum_cycle_duration <- 0.02;
	action _init_ {
		create simulation with: [scenario :: "perpendicular crossing", nb_people::100];
	}
	
	output {
		display map  {
			graphics "areas" transparency: 0.7{
				draw right_space color: #green border: #black;
				draw left_space color: #red border: #black;
				draw bottom_space color: #yellow border: #black;
				draw top_space color: #magenta border: #black;
			}
			species obstacle;
			species people;
		}
	}
}
  1. What's new (Changelog)
  1. Installation and Launching
    1. Installation
    2. Launching GAMA
    3. Updating GAMA
    4. Installing Plugins
  2. Workspace, Projects and Models
    1. Navigating in the Workspace
    2. Changing Workspace
    3. Importing Models
  3. Editing Models
    1. GAML Editor (Generalities)
    2. GAML Editor Tools
    3. Validation of Models
  4. Running Experiments
    1. Launching Experiments
    2. Experiments User interface
    3. Controls of experiments
    4. Parameters view
    5. Inspectors and monitors
    6. Displays
    7. Batch Specific UI
    8. Errors View
  5. Running Headless
    1. Headless Batch
    2. Headless Server
    3. Headless Legacy
  6. Preferences
  7. Troubleshooting
  1. Introduction
    1. Start with GAML
    2. Organization of a Model
    3. Basic programming concepts in GAML
  2. Manipulate basic Species
  3. Global Species
    1. Regular Species
    2. Defining Actions and Behaviors
    3. Interaction between Agents
    4. Attaching Skills
    5. Inheritance
  4. Defining Advanced Species
    1. Grid Species
    2. Graph Species
    3. Mirror Species
    4. Multi-Level Architecture
  5. Defining GUI Experiment
    1. Defining Parameters
    2. Defining Displays Generalities
    3. Defining 3D Displays
    4. Defining Charts
    5. Defining Monitors and Inspectors
    6. Defining Export files
    7. Defining User Interaction
  6. Exploring Models
    1. Run Several Simulations
    2. Batch Experiments
    3. Exploration Methods
  7. Optimizing Model Section
    1. Runtime Concepts
    2. Optimizing Models
  8. Multi-Paradigm Modeling
    1. Control Architecture
    2. Defining Differential Equations
  1. Manipulate OSM Data
  2. Diffusion
  3. Using Database
  4. Using FIPA ACL
  5. Using BDI with BEN
  6. Using Driving Skill
  7. Manipulate dates
  8. Manipulate lights
  9. Using comodel
  10. Save and restore Simulations
  11. Using network
  12. Headless mode
  13. Using Headless
  14. Writing Unit Tests
  15. Ensure model's reproducibility
  16. Going further with extensions
    1. Calling R
    2. Using Graphical Editor
    3. Using Git from GAMA
  1. Built-in Species
  2. Built-in Skills
  3. Built-in Architecture
  4. Statements
  5. Data Type
  6. File Type
  7. Expressions
    1. Literals
    2. Units and Constants
    3. Pseudo Variables
    4. Variables And Attributes
    5. Operators [A-A]
    6. Operators [B-C]
    7. Operators [D-H]
    8. Operators [I-M]
    9. Operators [N-R]
    10. Operators [S-Z]
  8. Exhaustive list of GAMA Keywords
  1. Installing the GIT version
  2. Developing Extensions
    1. Developing Plugins
    2. Developing Skills
    3. Developing Statements
    4. Developing Operators
    5. Developing Types
    6. Developing Species
    7. Developing Control Architectures
    8. Index of annotations
  3. Introduction to GAMA Java API
    1. Architecture of GAMA
    2. IScope
  4. Using GAMA flags
  5. Creating a release of GAMA
  6. Documentation generation

  1. Predator Prey
  2. Road Traffic
  3. 3D Tutorial
  4. Incremental Model
  5. Luneray's flu
  6. BDI Agents

  1. Team
  2. Projects using GAMA
  3. Scientific References
  4. Training Sessions

Resources

  1. Videos
  2. Conferences
  3. Code Examples
  4. Pedagogical materials
Clone this wiki locally