diff --git a/.github/workflows/cron.yml b/.github/workflows/cron.yml index e215ec98e4..1c3ef99268 100644 --- a/.github/workflows/cron.yml +++ b/.github/workflows/cron.yml @@ -58,8 +58,11 @@ jobs: cron-pt-image: if: github.repository == 'Project-MONAI/MONAI' + strategy: + matrix: + container: ["pytorch:21.02", "pytorch:21.04"] # 21.02 for backward comp. container: - image: nvcr.io/nvidia/pytorch:21.02-py3 # testing with the latest pytorch base image + image: nvcr.io/nvidia/${{ matrix.container }}-py3 # testing with the latest pytorch base image options: "--gpus all" runs-on: [self-hosted, linux, x64, common] steps: @@ -130,7 +133,7 @@ jobs: if: github.repository == 'Project-MONAI/MONAI' needs: cron-gpu # so that monai itself is verified first container: - image: nvcr.io/nvidia/pytorch:21.02-py3 # testing with the latest pytorch base image + image: nvcr.io/nvidia/pytorch:21.04-py3 # testing with the latest pytorch base image options: "--gpus all --ipc=host" runs-on: [self-hosted, linux, x64, common] steps: diff --git a/.github/workflows/pythonapp.yml b/.github/workflows/pythonapp.yml index bcce1e395e..efe3fb3c11 100644 --- a/.github/workflows/pythonapp.yml +++ b/.github/workflows/pythonapp.yml @@ -227,7 +227,7 @@ jobs: - environment: PT18+CUDA112 # we explicitly set pytorch to -h to avoid pip install error pytorch: "-h" - base: "nvcr.io/nvidia/pytorch:21.02-py3" + base: "nvcr.io/nvidia/pytorch:21.04-py3" container: image: ${{ matrix.base }} options: --gpus all diff --git a/Dockerfile b/Dockerfile index 23be9ae1c3..fd96ebf797 100644 --- a/Dockerfile +++ b/Dockerfile @@ -11,7 +11,7 @@ # To build with a different base image # please run `docker build` using the `--build-arg PYTORCH_IMAGE=...` flag. -ARG PYTORCH_IMAGE=nvcr.io/nvidia/pytorch:21.02-py3 +ARG PYTORCH_IMAGE=nvcr.io/nvidia/pytorch:21.04-py3 FROM ${PYTORCH_IMAGE} LABEL maintainer="monai.contact@gmail.com" diff --git a/tests/testing_data/integration_answers.py b/tests/testing_data/integration_answers.py index 5490cfe2e3..78ff97bd91 100644 --- a/tests/testing_data/integration_answers.py +++ b/tests/testing_data/integration_answers.py @@ -314,6 +314,67 @@ ], }, }, + { # test answers for PyTorch 21.04, cuda 11.3 + "integration_classification_2d": { + "losses": [0.7772567988770782, 0.16357883198815545, 0.0748426011840629, 0.045560025710873545], + "best_metric": 0.9999362036681547, + "infer_prop": [1030, 898, 981, 1033, 960, 1046], + }, + "integration_segmentation_3d": { + "losses": [ + 0.5462346076965332, + 0.4699550330638885, + 0.4407052755355835, + 0.4473582059144974, + 0.4345871120691299, + 0.4268435090780258, + ], + "best_metric": 0.9325245052576066, + "infer_metric": 0.9326683700084686, + "output_sums": [ + 0.14224469870198278, + 0.15221021012369151, + 0.15124158255724182, + 0.13988812880932433, + 0.18869885039284465, + 0.16944664085835437, + 0.14679946398855015, + 0.1681337815374021, + 0.1572538225010156, + 0.179386563044054, + 0.162734465243387, + 0.16831902111202945, + 0.1447043535420074, + 0.11343210557896033, + 0.16199135405262954, + 0.20095180481987404, + 0.17613484080473857, + 0.09717457016552708, + 0.1940439758638305, + 0.2033698355271389, + 0.19628583555443793, + 0.20852096425983455, + 0.16202004771083997, + 0.13206408917949392, + 0.14840973098125526, + 0.14237425379050472, + 0.23165483128059614, + 0.16098621485325398, + 0.14831028015056963, + 0.10317099380415945, + 0.118716576251689, + 0.13002315213569166, + 0.11436407827087304, + 0.1522274707636008, + 0.16314910792851098, + 0.1941135852761834, + 0.22309890968242424, + 0.18111804948625987, + 0.19043976068601465, + 0.07442812452084423, + ], + }, + }, ]