forked from dusty-nv/jetson-containers
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbenchmark.py
executable file
·108 lines (77 loc) · 4.31 KB
/
benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#!/usr/bin/env python3
# benchmark a quantized GGML model with llama_cpp_python API
import os
import time
import datetime
import argparse
import resource
import socket
import pprint
from llama_cpp import Llama
# parse command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('-m', '--model', type=str, default='', required=True, help="path to the GGML .bin model")
parser.add_argument('-p', '--prompt', type=str, default='Once upon a time,')
parser.add_argument('-n', '--n-predict', type=int, default=128, help='number of output tokens to generate, including the input prompt')
parser.add_argument('-c', '--ctx-size', type=int, default=512, help='size of the prompt context (default: 512)')
parser.add_argument('-b', '--batch-size', type=int, default=512, help='batch size for prompt processing (default: 512)')
parser.add_argument('-t', '--threads', type=int, default=6, help='number of threads to use during computation (default: 6)')
parser.add_argument('-ngl', '--n-gpu-layers', type=int, default=999, help='number of layers to store in VRAM (default: 999)')
parser.add_argument('-gqa', '--gqa', type=int, default=1, help='grouped-query attention factor (TEMP!!! use 8 for LLaMAv2 70B) (default: 1)')
parser.add_argument('--top-k', type=int, default=40, help='top-k sampling (default: 40, 0 = disabled)')
parser.add_argument('--top-p', type=float, default=0.95, help='top-p sampling (default: 0.95, 1.0 = disabled)')
parser.add_argument('--use-prompt-cache', action='store_true', help='store the model eval results of past runs')
parser.add_argument('--profile-tokenization', action='store_true', help='include the time to tokenize/detokenize in perf measurements')
parser.add_argument('--runs', type=int, default=2, help='the number of benchmark timing iterations')
parser.add_argument('--warmup', type=int, default=2, help='the number of warmup iterations')
parser.add_argument('--save', type=str, default='', help='CSV file to save benchmarking results to')
args = parser.parse_args()
print(args)
def get_max_rss():
"""
Return the peak memory usage in MB (max RSS - https://stackoverflow.com/a/7669482)
"""
return (resource.getrusage(resource.RUSAGE_SELF).ru_maxrss + resource.getrusage(resource.RUSAGE_CHILDREN).ru_maxrss) / 1024
model = Llama(model_path=args.model,
n_ctx=args.ctx_size,
n_batch=args.batch_size,
n_gpu_layers=args.n_gpu_layers,
n_gqa=args.gqa,
n_threads=args.threads)
input_tokens = model.tokenize(args.prompt.encode('utf-8'))
print(f"input_tokens ({len(input_tokens)})", input_tokens)
print(f"system RAM used: {get_max_rss():.2f} MB")
time_avg = 0.0
for run in range(args.runs + args.warmup):
if not args.use_prompt_cache:
model.reset()
output_tokens = []
time_begin = time.perf_counter()
if args.profile_tokenization:
output = model(args.prompt, max_tokens=args.n_predict, top_k=args.top_k, top_p=args.top_p, echo=True)
else:
for token in model.generate(input_tokens, top_k=args.top_k, top_p=args.top_p):
output_tokens.append(token)
if len(output_tokens) >= args.n_predict:
break
time_elapsed = (time.perf_counter() - time_begin)
if run >= args.warmup:
time_avg += time_elapsed
if not args.profile_tokenization:
output = model.detokenize(output_tokens).decode('utf-8', errors='ignore')
print('\n')
pprint.pprint(output)
print(f"\n{'WARMUP' if run < args.warmup else 'RUN'} {run} = {time_elapsed:.4f} seconds, {args.n_predict/time_elapsed:.1f} tokens/sec")
# compute statistics
time_avg /= args.runs
tokens_sec = args.n_predict / time_avg
memory_usage = get_max_rss()
print(f"\nAVG = {time_avg:.4f} seconds, {tokens_sec:.1f} tokens/sec memory={memory_usage:.2f} MB\n")
print(args)
if args.save:
if not os.path.isfile(args.save): # csv header
with open(args.save, 'w') as file:
file.write(f"timestamp, hostname, model, tokens, tokens/sec, latency, memory\n")
with open(args.save, 'a') as file:
file.write(f"{datetime.datetime.now().strftime('%Y%m%d %H:%M:%S')}, {socket.gethostname()}, ")
file.write(f"{os.path.basename(args.model)}, {args.n_predict}, {tokens_sec}, {time_avg}, {memory_usage}\n")