-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathtrain.py
246 lines (198 loc) · 10.8 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
import os
import torch
import torch.optim as optim
import time
import numpy as np
from datetime import datetime
from pathlib import Path
from collections import defaultdict
from data.data_loader import get_datasets, get_dataloader
from utils.loss_func import PermLoss
from utils.evaluation_metric import matching_accuracy, compute_metrics, summarize_metrics, print_metrics
from utils.model_sl import load_model, save_model
from utils.hungarian import hungarian
from utils.visdomshow import VisdomViz
from utils.config import cfg
from parallel import DataParallel
from eval import eval_model
def train_eval_model(model,
permLoss,
optimizer,
dataloader,
num_epochs=25,
resume=False,
start_epoch=0,
viz=None,
savefiletime='time'):
print('**************************************')
print('Start training...')
dataset_size = len(dataloader['train'].dataset)
print('train datasize: {}'.format(dataset_size))
since = time.time()
lap_solver = hungarian
optimal_acc = 0.0
optimal_rot = np.inf
device = next(model.parameters()).device
print('model on device: {}'.format(device))
checkpoint_path = Path(cfg.OUTPUT_PATH) / 'params'
if not checkpoint_path.exists():
checkpoint_path.mkdir(parents=True)
if resume:
assert start_epoch != 0
model_path = str(checkpoint_path / 'params_{:04}.pt'.format(start_epoch))
print('Loading model parameters from {}'.format(model_path))
load_model(model, model_path)
optim_path = str(checkpoint_path / 'optim_{:04}.pt'.format(start_epoch))
print('Loading optimizer state from {}'.format(optim_path))
optimizer.load_state_dict(torch.load(optim_path))
scheduler = optim.lr_scheduler.MultiStepLR(optimizer,
milestones=cfg.TRAIN.LR_STEP,
gamma=cfg.TRAIN.LR_DECAY,
last_epoch=cfg.TRAIN.START_EPOCH - 1)
for epoch in range(start_epoch, num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
model.train() # Set model to training mode
print('lr = ' + ', '.join(['{:.2e}'.format(x['lr']) for x in optimizer.param_groups]))
iter_num = 0
running_since = time.time()
all_train_metrics_np = defaultdict(list)
# Iterate over data3d.
for inputs in dataloader['train']:
P1_gt, P2_gt = [_.cuda() for _ in inputs['Ps']] #keypoints coordinate
n1_gt, n2_gt = [_.cuda() for _ in inputs['ns']] #keypoints number
A1_gt, A2_gt = [_.cuda() for _ in inputs['As']] #edge connect matrix
perm_mat = inputs['gt_perm_mat'].cuda() #permute matrix
T1_gt, T2_gt = [_.cuda() for _ in inputs['Ts']]
Inlier_src_gt, Inlier_ref_gt = [_.cuda() for _ in inputs['Ins']]
batch_cur_size = perm_mat.size(0)
iter_num = iter_num + 1
# zero the parameter gradients
optimizer.zero_grad()
with torch.set_grad_enabled(True):
# forward
s_pred, Inlier_src_pre, Inlier_ref_pre = model(P1_gt, P2_gt, A1_gt, A2_gt, n1_gt, n2_gt)
# multi_loss = []
if cfg.DATASET.NOISE_TYPE == 'clean':
permloss = permLoss(s_pred, perm_mat, n1_gt, n2_gt)
loss = permloss
else:
if cfg.PGM.USEINLIERRATE:
s_pred = Inlier_src_pre * s_pred * Inlier_ref_pre.transpose(2, 1).contiguous()
permloss = permLoss(s_pred, perm_mat, n1_gt, n2_gt)
loss = permloss
# backward + optimize
loss.backward()
optimizer.step()
# training accuracy statistic
s_perm_mat = lap_solver(s_pred, n1_gt, n2_gt, Inlier_src_pre, Inlier_ref_pre)
match_metrics = matching_accuracy(s_perm_mat, perm_mat, n1_gt)
perform_metrics = compute_metrics(s_perm_mat, P1_gt[:,:,:3], P2_gt[:,:,:3], T1_gt[:, :3, :3], T1_gt[:, :3, 3])
for k in match_metrics:
all_train_metrics_np[k].append(match_metrics[k])
for k in perform_metrics:
all_train_metrics_np[k].append(perform_metrics[k])
all_train_metrics_np['loss'].append(np.repeat(loss.item(), 4))
if iter_num % cfg.STATISTIC_STEP == 0:
running_speed = cfg.STATISTIC_STEP * batch_cur_size / (time.time() - running_since)
# globalstep = epoch * dataset_size + iter_num * batch_cur_size
print('Epoch {:<4} Iteration {:<4} {:>4.2f}sample/s Loss={:<8.4f} GT-Acc:{:.4f} Pred-Acc:{:.4f}'
.format(epoch, iter_num, running_speed,
np.mean(np.concatenate(all_train_metrics_np['loss'])[-cfg.STATISTIC_STEP*batch_cur_size:]),
np.mean(np.concatenate(all_train_metrics_np['acc_gt'])[-cfg.STATISTIC_STEP*batch_cur_size:]),
np.mean(np.concatenate(all_train_metrics_np['acc_pred'])[-cfg.STATISTIC_STEP*batch_cur_size:])))
running_since = time.time()
all_train_metrics_np = {k: np.concatenate(all_train_metrics_np[k]) for k in all_train_metrics_np}
summary_metrics = summarize_metrics(all_train_metrics_np)
print('Epoch {:<4} Mean-Loss: {:.4f} GT-Acc:{:.4f} Pred-Acc:{:.4f}'.
format(epoch, summary_metrics['loss'], summary_metrics['acc_gt'], summary_metrics['acc_pred']) )
print_metrics(summary_metrics)
save_model(model, str(checkpoint_path / 'params_{:04}.pt'.format(epoch + 1)))
torch.save(optimizer.state_dict(), str(checkpoint_path / 'optim_{:04}.pt'.format(epoch + 1)))
# to save values during training
metric_is_save= False
if metric_is_save:
np.save(str(Path(cfg.OUTPUT_PATH) / ('train_log_' + savefiletime + '_metric')),
all_train_metrics_np)
if viz is not None:
viz.update('train_loss', epoch, {'loss': summary_metrics['loss']})
viz.update('train_acc', epoch, {'acc': summary_metrics['acc_gt']})
viz.update('train_metric', epoch, {'r_mae': summary_metrics['r_mae'],
't_mae': summary_metrics['t_mae']})
# Eval in each epochgi
val_metrics = eval_model(model, dataloader['val'])
if viz is not None:
viz.update('val_acc', epoch, {'acc': val_metrics['acc_gt']})
viz.update('val_metric', epoch, {'r_mae': val_metrics['r_mae'],
't_mae': val_metrics['t_mae']})
if optimal_acc < val_metrics['acc_gt']:
optimal_acc = val_metrics['acc_gt']
print('Current best acc model is {}'.format(epoch + 1))
if optimal_rot > val_metrics['r_mae']:
optimal_rot = val_metrics['r_mae']
print('Current best rotation model is {}'.format(epoch + 1))
# Test in each epochgi
test_metrics = eval_model(model, dataloader['test'])
if viz is not None:
viz.update('test_acc', epoch, {'acc': test_metrics['acc_gt']})
viz.update('test_metric', epoch, {'r_mae': test_metrics['r_mae'],
't_mae': test_metrics['t_mae']})
scheduler.step()
time_elapsed = time.time() - since
print('Training complete in {:.0f}h {:.0f}m {:.0f}s'
.format(time_elapsed // 3600, (time_elapsed // 60) % 60, time_elapsed % 60))
return model
if __name__ == '__main__':
from utils.dup_stdout_manager import DupStdoutFileManager
from utils.parse_argspc import parse_args
from utils.print_easydict import print_easydict
import socket
args = parse_args('Point could registration of graph matching training & evaluation code.')
if cfg.VISDOM.OPEN:
hostname = socket.gethostname()
Visdomins = VisdomViz(env_name=hostname+'RGM_Train', server=cfg.VISDOM.SERVER, port=cfg.VISDOM.PORT)
Visdomins.viz.close()
else:
Visdomins = None
import importlib
mod = importlib.import_module(cfg.MODULE)
Net = mod.Net
torch.manual_seed(cfg.RANDOM_SEED)
pc_dataset = {x: get_datasets(partition = x,
num_points = cfg.DATASET.POINT_NUM,
unseen = cfg.DATASET.UNSEEN,
noise_type = cfg.DATASET.NOISE_TYPE,
rot_mag = cfg.DATASET.ROT_MAG,
trans_mag = cfg.DATASET.TRANS_MAG,
partial_p_keep = cfg.DATASET.PARTIAL_P_KEEP,
crossval = (x == 'train'),
train_part = (x == 'train')) for x in ('train', 'test')}
pc_dataset['val'] = get_datasets(partition = 'train',
num_points = cfg.DATASET.POINT_NUM,
unseen = cfg.DATASET.UNSEEN,
noise_type = cfg.DATASET.NOISE_TYPE,
rot_mag = cfg.DATASET.ROT_MAG,
trans_mag = cfg.DATASET.TRANS_MAG,
partial_p_keep = cfg.DATASET.PARTIAL_P_KEEP,
crossval = True,
train_part = False)
dataloader = {x: get_dataloader(pc_dataset[x], shuffle=(x == 'train')) for x in ('train', 'val', 'test')}
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
model = Net()
model = model.cuda()
permLoss = PermLoss()
if cfg.TRAIN.OPTIM == 'SGD':
optimizer = optim.SGD(model.parameters(), lr=cfg.TRAIN.LR, momentum=cfg.TRAIN.MOMENTUM, nesterov=True)
else:
optimizer = optim.Adam(model.parameters(), lr=cfg.TRAIN.LR, weight_decay=1e-4)
model = DataParallel(model, device_ids=cfg.GPUS)
if not Path(cfg.OUTPUT_PATH).exists():
Path(cfg.OUTPUT_PATH).mkdir(parents=True)
now_time = datetime.now().strftime('%Y-%m-%d-%H-%M-%S')
with DupStdoutFileManager(str(Path(cfg.OUTPUT_PATH) / ('train_log_' + now_time + '.log'))) as _:
print_easydict(cfg)
model = train_eval_model(model, permLoss, optimizer, dataloader,
num_epochs=cfg.TRAIN.NUM_EPOCHS,
resume=cfg.TRAIN.START_EPOCH != 0,
start_epoch=cfg.TRAIN.START_EPOCH,
viz = Visdomins,savefiletime=now_time)