-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathdata_loader_creatrealdata.py
614 lines (534 loc) · 28 KB
/
data_loader_creatrealdata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import os
import glob
import h5py
import torch
import numpy as np
from typing import List
import torch.nn.functional as F
from torch.utils.data import Dataset
import torchvision
from utils.build_graphs import build_graphs
import data.data_transform_syndata as Transforms
import data.data_transform_realdata_creat as Transformsreal
# import utils.data_transform4 as Transforms
from utils.config import cfg
import open3d
# Part of the code is referred from: https://github.com/charlesq34/pointnet
def download():
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
if not os.path.exists(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048')):
www = 'https://shapenet.cs.stanford.edu/media/modelnet40_ply_hdf5_2048.zip'
zipfile = os.path.basename(www)
os.system('wget %s; unzip %s' % (www+' --no-check-certificate', zipfile))
os.system('mv %s %s' % (zipfile[:-4], DATA_DIR))
os.system('rm %s' % (zipfile))
def load_data(partition):
download()
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
all_data = []
all_label = []
for h5_name in glob.glob(os.path.join(DATA_DIR, 'modelnet40_ply_hdf5_2048', 'ply_data_%s*.h5' % partition)):
f = h5py.File(h5_name, 'r')
# data = f['data'][:].astype('float32')
data = np.concatenate([f['data'][:], f['normal'][:]], axis=-1)
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label
def load_data_shapenet_var(partition):
download()
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
all_data = []
all_label = []
for h5_name in glob.glob(os.path.join(DATA_DIR, 'shapenet', '%s*.h5' % partition)):
f = h5py.File(h5_name, 'r')
# data = f['data'][:].astype('float32')
data = np.concatenate([f['data'][:], f['normal'][:]], axis=-1)
label = f['label'][:].astype('int64')
f.close()
all_data.append(data)
all_label.append(label)
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
return all_data, all_label
def load_data_shapenet_raw(partition='test'):
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
all_data = []
all_label = []
cat2id = {}
# parse category file.
with open(os.path.join(DATA_DIR,'shapenet_raw', 'synsetoffset2category.txt'), 'r') as f:
for line in f:
ls = line.strip().split()
cat2id[ls[0]] = ls[1]
# if a subset of classes is specified.
id2cat = {v: k for k, v in cat2id.items()}
datapath = []
splitfile = os.path.join(DATA_DIR,'shapenet_raw', 'train_test_split', 'shuffled_{}_file_list.json'.format(partition))
import json
filelist = json.load(open(splitfile, 'r'))
for file in filelist:
_, category, uuid = file.split('/')
if category in cat2id.values():
datapath.append([
id2cat[category],
os.path.join(DATA_DIR,'shapenet_raw', category, 'points', uuid + '.pts'),
os.path.join(DATA_DIR,'shapenet_raw', category, 'points_label', uuid + '.seg')
])
classes = dict(zip(sorted(cat2id), range(len(cat2id))))
# print("classes:", self.classes)
for index in range(len(datapath)):
fn = datapath[index]
label = classes[datapath[index][0]]
data = np.loadtxt(fn[1]).astype(np.float32)
data = data / max(abs(data.min()), data.max())
np.random.seed(index)
if data.shape[0]>=2048:
data = data[np.random.choice(data.shape[0], 2048, replace=False),:]
else:
data = data[np.random.choice(data.shape[0], 2048, replace=True), :]
dataopen3d = open3d.geometry.PointCloud()
dataopen3d.points = open3d.utility.Vector3dVector(data)
dataopen3d.estimate_normals(search_param=open3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
all_data.append(np.expand_dims(np.concatenate([data, dataopen3d.normals], axis=-1),axis=0))
all_label.append(np.array([label]))
all_data = np.concatenate(all_data, axis=0)
all_label = np.concatenate(all_label, axis=0)
np.save(os.path.join(DATA_DIR, 'shapenet_raw', partition), {'data': all_data.astype(np.float32), 'label': all_label})
return all_data, all_label
def load_data_shapenet(partition='test'):
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
all=np.load(os.path.join(DATA_DIR, 'shapenet_raw', partition+'.npy'),allow_pickle=True).item()
all_data=all['data']
all_label=all['label']
return all_data, all_label
def get_transforms(partition: str, num_points: int = 1024,
noise_type: str = 'clean', rot_mag: float = 45.0,
trans_mag: float = 0.5, partial_p_keep: List = None):
"""Get the list of transformation to be used for training or evaluating RegNet
Args:
noise_type: Either 'clean', 'jitter', 'crop'.
Depending on the option, some of the subsequent arguments may be ignored.
rot_mag: Magnitude of rotation perturbation to apply to source, in degrees.
Default: 45.0 (same as Deep Closest Point)
trans_mag: Magnitude of translation perturbation to apply to source.
Default: 0.5 (same as Deep Closest Point)
num_points: Number of points to uniformly resample to.
Note that this is with respect to the full point cloud. The number of
points will be proportionally less if cropped
partial_p_keep: Proportion to keep during cropping, [src_p, ref_p]
Default: [0.7, 0.7], i.e. Crop both source and reference to ~70%
Returns:
train_transforms, test_transforms: Both contain list of transformations to be applied
"""
partial_p_keep = partial_p_keep if partial_p_keep is not None else [0.7, 0.7]
if noise_type == "clean":
# 1-1 correspondence for each point (resample first before splitting), no noise
if partition == 'train':
transforms = [Transforms.Resampler(num_points),
Transforms.SplitSourceRef(),
Transforms.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transforms.ShufflePoints()]
else:
transforms = [Transforms.SetDeterministic(),
Transforms.FixedResampler(num_points),
Transforms.SplitSourceRef(),
Transforms.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transforms.ShufflePoints()]
elif noise_type == "jitter":
# Points randomly sampled (might not have perfect correspondence), gaussian noise to position
if partition == 'train':
transforms = [Transforms.SetJitterFlag(),
Transforms.SplitSourceRef(),
Transforms.Resampler(num_points),
Transforms.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transforms.RandomJitter(),
Transforms.ShufflePoints()]
else:
transforms = [Transforms.SetJitterFlag(),
Transforms.SetDeterministic(),
Transforms.SplitSourceRef(),
Transforms.Resampler(num_points),
Transforms.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transforms.RandomJitter(),
Transforms.ShufflePoints()]
elif noise_type == "crop":
# Both source and reference point clouds cropped, plus same noise in "jitter"
if partition == 'train':
transforms = [Transforms.SetCorpFlag(),
Transforms.SplitSourceRef(),
Transforms.Resampler(num_points),
Transforms.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transforms.RandomCrop(partial_p_keep),
Transforms.RandomJitter(),
Transforms.ShufflePoints()]
else:
transforms = [Transforms.SetCorpFlag(),
Transforms.SetDeterministic(),
Transforms.SplitSourceRef(),
Transforms.Resampler(num_points),
Transforms.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transforms.RandomCrop(partial_p_keep),
Transforms.RandomJitter(),
Transforms.ShufflePoints()]
elif noise_type == "cropinv":
# Both source and reference point clouds cropped, plus same noise in "jitter"
if partition == 'train':
transforms = [Transforms.SetCorpFlag(),
Transforms.SplitSourceRef(),
Transforms.Resampler(num_points),
Transforms.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transforms.RandomCropinv(partial_p_keep),
Transforms.RandomJitter(),
Transforms.ShufflePoints()]
else:
transforms = [Transforms.SetCorpFlag(),
Transforms.SetDeterministic(),
Transforms.SplitSourceRef(),
Transforms.Resampler(num_points),
Transforms.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transforms.RandomCropinv(partial_p_keep),
Transforms.RandomJitter(),
Transforms.ShufflePoints()]
else:
raise NotImplementedError
return transforms
class ModelNet40(Dataset):
def __init__(self, partition='train', unseen=False, transform=None, crossval = False, train_part=False, proportion=0.8):
# data_shape:[B, N, 3]
self.data, self.label = load_data(partition)
if unseen and partition=='train' and train_part is False:
self.data, self.label = load_data('test')
if cfg.EXPERIMENT.SHAPENET:
self.data, self.label = load_data_shapenet(partition)
self.partition = partition
self.unseen = unseen
self.label = self.label.squeeze()
self.transform = transform
self.crossval = crossval
self.train_part = train_part
if self.unseen:
######## simulate testing on first 20 categories while training on last 20 categories
if self.partition == 'test':
self.data = self.data[self.label>=20]
self.label = self.label[self.label>=20]
elif self.partition == 'train':
if self.train_part:
self.data = self.data[self.label<20]
self.label = self.label[self.label<20]
else:
self.data = self.data[self.label<20]
self.label = self.label[self.label<20]
else:
if self.crossval:
if self.train_part:
self.data = self.data[0:int(self.label.shape[0]*proportion)]
self.label = self.label[0:int(self.label.shape[0]*proportion)]
else:
self.data = self.data[int(self.label.shape[0]*proportion):-1]
self.label = self.label[int(self.label.shape[0]*proportion):-1]
def __getitem__(self, item):
sample = {'points': self.data[item, :, :], 'label': self.label[item], 'idx': np.array(item, dtype=np.int32)}
if self.transform:
sample = self.transform(sample)
# if item==139:
# np.save(cfg.DATASET.NOISE_TYPE+'sample'+str(item),sample)
T_ab = sample['transform_gt']
T_ba = np.concatenate((T_ab[:,:3].T, np.expand_dims(-(T_ab[:,:3].T).dot(T_ab[:,3]), axis=1)), axis=-1)
n1_gt, n2_gt = sample['perm_mat'].shape
A1_gt, e1_gt = build_graphs(sample['points_src'], sample['src_inlier'], n1_gt, stg=cfg.PAIR.GT_GRAPH_CONSTRUCT)
if cfg.PAIR.REF_GRAPH_CONSTRUCT == 'same':
A2_gt = A1_gt.transpose().contiguous()
e2_gt= e1_gt
else:
A2_gt, e2_gt = build_graphs(sample['points_ref'], sample['ref_inlier'], n2_gt, stg=cfg.PAIR.REF_GRAPH_CONSTRUCT)
if cfg.DATASET.NOISE_TYPE != 'clean':
src_o3 = open3d.geometry.PointCloud()
ref_o3 = open3d.geometry.PointCloud()
src_o3.points = open3d.utility.Vector3dVector(sample['points_src'][:, :3])
ref_o3.points = open3d.utility.Vector3dVector(sample['points_ref'][:, :3])
src_o3.estimate_normals(search_param=open3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
ref_o3.estimate_normals(search_param=open3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
sample['points_src'][:, 3:6] = src_o3.normals
sample['points_ref'][:, 3:6] = ref_o3.normals
ret_dict = {'Ps': [torch.Tensor(x) for x in [sample['points_src'], sample['points_ref']]],
'ns': [torch.tensor(x) for x in [n1_gt, n2_gt]],
'es': [torch.tensor(x) for x in [e1_gt, e2_gt]],
'gt_perm_mat': torch.tensor(sample['perm_mat'].astype('float32')),
'As': [torch.Tensor(x) for x in [A1_gt, A2_gt]],
'Ts': [torch.Tensor(x) for x in [T_ab.astype('float32'), T_ba.astype('float32')]],
'Ins': [torch.Tensor(x) for x in [sample['src_inlier'], sample['ref_inlier']]],
'label': torch.tensor(sample['label']),
'raw': torch.Tensor(sample['points_raw']),
}
return ret_dict
# return pointcloud1.astype('float32'), pointcloud2.astype('float32'), \
# n1_gt, n2_gt, \
# e1_gt, e2_gt, \
# perm_mat.astype('float32'), \
# G1_gt.astype('float32'), G2_gt.astype('float32'), \
# H1_gt.astype('float32'), H2_gt.astype('float32'),\
# R_ab.astype('float32'), R_ba.astype('float32'),\
# translation_ab.astype('float32'), translation_ba.astype('float32'),\
# euler_ab.astype('float32'), euler_ba.astype('float32')
def __len__(self):
return self.data.shape[0]
class ShapeNet(Dataset):
def __init__(self, partition='train', unseen=False, transform=None, crossval = False, train_part=False, proportion=0.8):
# data_shape:[B, N, 3]
self.data, self.label = load_data_shapenet(partition)
if unseen and partition=='train' and train_part is False:
self.data, self.label = load_data_shapenet('test')
self.partition = partition
self.unseen = unseen
self.label = self.label.squeeze()
self.transform = transform
self.crossval = crossval
self.train_part = train_part
if self.unseen:
######## simulate testing on first 20 categories while training on last 20 categories
if self.partition == 'test':
self.data = self.data[self.label>=10]
self.label = self.label[self.label>=10]
elif self.partition == 'train':
if self.train_part:
self.data = self.data[self.label<10]
self.label = self.label[self.label<10]
else:
self.data = self.data[self.label<10]
self.label = self.label[self.label<10]
else:
if self.crossval:
if self.train_part:
self.data = self.data[0:int(self.label.shape[0]*proportion)]
self.label = self.label[0:int(self.label.shape[0]*proportion)]
else:
self.data = self.data[int(self.label.shape[0]*proportion):-1]
self.label = self.label[int(self.label.shape[0]*proportion):-1]
def __getitem__(self, item):
sample = {'points': self.data[item, :, :], 'label': self.label[item], 'idx': np.array([item], dtype=np.int32)}
if self.transform:
sample = self.transform(sample)
# if item==139:
# np.save(cfg.DATASET.NOISE_TYPE+'sample'+str(item),sample)
# samplecrop = np.load('/home/science/code/python/PGM/cropsample139.npy', allow_pickle=True).item()
T_ab = sample['transform_gt']
T_ba = np.concatenate((T_ab[:,:3].T, np.expand_dims(-(T_ab[:,:3].T).dot(T_ab[:,3]), axis=1)), axis=-1)
n1_gt, n2_gt = sample['perm_mat'].shape
A1_gt, e1_gt = build_graphs(sample['points_src'], sample['src_inlier'], n1_gt, stg=cfg.PAIR.GT_GRAPH_CONSTRUCT)
if cfg.PAIR.REF_GRAPH_CONSTRUCT == 'same':
A2_gt = A1_gt.transpose().contiguous()
e2_gt= e1_gt
else:
A2_gt, e2_gt = build_graphs(sample['points_ref'], sample['ref_inlier'], n2_gt, stg=cfg.PAIR.REF_GRAPH_CONSTRUCT)
if cfg.DATASET.NOISE_TYPE != 'clean':
src_o3 = open3d.geometry.PointCloud()
ref_o3 = open3d.geometry.PointCloud()
src_o3.points = open3d.utility.Vector3dVector(sample['points_src'][:, :3])
ref_o3.points = open3d.utility.Vector3dVector(sample['points_ref'][:, :3])
src_o3.estimate_normals(search_param=open3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
ref_o3.estimate_normals(search_param=open3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
sample['points_src'][:, 3:6] = src_o3.normals
sample['points_ref'][:, 3:6] = ref_o3.normals
ret_dict = {'Ps': [torch.Tensor(x) for x in [sample['points_src'], sample['points_ref']]],
'ns': [torch.tensor(x) for x in [n1_gt, n2_gt]],
'es': [torch.tensor(x) for x in [e1_gt, e2_gt]],
'gt_perm_mat': torch.tensor(sample['perm_mat'].astype('float32')),
'As': [torch.Tensor(x) for x in [A1_gt, A2_gt]],
'Ts': [torch.Tensor(x) for x in [T_ab.astype('float32'), T_ba.astype('float32')]],
'Ins': [torch.Tensor(x) for x in [sample['src_inlier'], sample['ref_inlier']]],
'label': torch.tensor(sample['label']),
'raw': torch.Tensor(sample['points_raw']),
}
return ret_dict
def __len__(self):
return self.data.shape[0]
def get_realdata_transform(partition: str, num_points: int = 1024,
rot_mag: float = 45.0, trans_mag: float = 0.5):
"""Get the list of transformation to be used for training or evaluating RegNet
Args:
rot_mag: Magnitude of rotation perturbation to apply to source, in degrees.
Default: 45.0 (same as Deep Closest Point)
trans_mag: Magnitude of translation perturbation to apply to source.
Default: 0.5 (same as Deep Closest Point)
num_points: Number of points to uniformly resample to.
Note that this is with respect to the full point cloud. The number of
points will be proportionally less if cropped
Returns:
train_transforms, test_transforms: Both contain list of transformations to be applied
"""
# Points randomly sampled (might not have perfect correspondence), gaussian noise to position
if partition == 'train':
transforms = [Transformsreal.SplitSourceRef(),
Transformsreal.Resampler(num_points),
Transformsreal.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transformsreal.RandomJitter(),
Transformsreal.ShufflePoints()]
else:
transforms = [Transformsreal.SetDeterministic(),
Transformsreal.SplitSourceRef(),
Transformsreal.Resampler(num_points),
Transformsreal.RandomTransformSE3_euler(rot_mag=rot_mag, trans_mag=trans_mag),
Transformsreal.RandomJitter(),
Transformsreal.ShufflePoints()]
return transforms
class Realdata_3dMatch(Dataset):
def __init__(self, partition='train', train_part=False, transform=None):
self.root = os.path.abspath(os.path.join(os.path.dirname(__file__),os.path.pardir,os.path.pardir, 'Data/3d_match'))
self.partition = partition
self.transform = transform
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
if self.partition=='train':
if train_part:
txtpath = '/3d_match/3DMatch_filtered_train.txt'
else:
txtpath = '/3d_match/3DMatch_filtered_valid.txt'
subset_names = open(DATA_DIR + txtpath).read().split()
elif self.partition=='test':
txtpath = self.root + '/test50/3DMatch_all_test.txt'
subset_names = open(txtpath).read().split()
else:
print('no {} data type, please input: train/val/test'.format(self.partition))
self.files = []
for name in subset_names:
self.files.append(name)
def __getitem__(self, item):
file = os.path.join(self.root, self.partition, self.files[item])
data = np.load(file)
sample = {'points':data['x'], 'R':data['R'], 't':np.expand_dims(data['t'], -1),'idx': np.array(item, dtype=np.int32)}
# 'label': self.files[idx].split('/')[0]
if self.transform:
sample = self.transform(sample)
T_ab = sample['transform_gt']
T_ba = np.concatenate((T_ab[:, :3].T, np.expand_dims(-(T_ab[:, :3].T).dot(T_ab[:, 3]), axis=1)), axis=-1)
n1_gt, n2_gt = sample['perm_mat'].shape
A1_gt, e1_gt = build_graphs(sample['points_src'], sample['src_inlier'], n1_gt, stg=cfg.PAIR.GT_GRAPH_CONSTRUCT)
if cfg.PAIR.REF_GRAPH_CONSTRUCT == 'same':
A2_gt = A1_gt.transpose().contiguous()
e2_gt = e1_gt
else:
A2_gt, e2_gt = build_graphs(sample['points_ref'], sample['ref_inlier'], n2_gt,
stg=cfg.PAIR.REF_GRAPH_CONSTRUCT)
if cfg.DATASET.NOISE_TYPE != 'clean':
src_o3 = open3d.geometry.PointCloud()
ref_o3 = open3d.geometry.PointCloud()
src_o3.points = open3d.utility.Vector3dVector(sample['points_src'][:, :3])
ref_o3.points = open3d.utility.Vector3dVector(sample['points_ref'][:, :3])
src_o3.estimate_normals(search_param=open3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
ref_o3.estimate_normals(search_param=open3d.geometry.KDTreeSearchParamHybrid(radius=0.1, max_nn=30))
sample['points_src'] = np.concatenate([sample['points_src'],src_o3.normals], axis=1).astype(np.float32)
sample['points_ref'] = np.concatenate([sample['points_ref'],ref_o3.normals], axis=1).astype(np.float32)
ret_dict = {'Ps': [torch.Tensor(x) for x in [sample['points_src'], sample['points_ref']]],
'ns': [torch.tensor(x) for x in [n1_gt, n2_gt]],
'es': [torch.tensor(x) for x in [e1_gt, e2_gt]],
'gt_perm_mat': torch.tensor(sample['perm_mat'].astype('float32')),
'As': [torch.Tensor(x) for x in [A1_gt, A2_gt]],
'Ts': [torch.Tensor(x) for x in [T_ab.astype('float32'), T_ba.astype('float32')]],
'Ins': [torch.Tensor(x) for x in [sample['src_inlier'], sample['ref_inlier']]],
'label':torch.tensor(1),
'raw': torch.Tensor(sample['points_raw']),
}
return ret_dict
def __len__(self):
return len(self.files)
def get_datasets(partition='train', num_points=1024, unseen=False,
noise_type="clean" , rot_mag = 45.0, trans_mag = 0.5,
partial_p_keep = [0.7, 0.7], crossval = False, train_part=False):
if cfg.DATASET_NAME=='ModelNet40':
transforms = get_transforms(partition=partition, num_points=num_points , noise_type=noise_type,
rot_mag = rot_mag, trans_mag = trans_mag, partial_p_keep = partial_p_keep)
transforms = torchvision.transforms.Compose(transforms)
datasets = ModelNet40(partition, unseen, transforms, crossval=crossval, train_part=train_part)
elif cfg.DATASET_NAME=='ShapeNet':
transforms = get_transforms(partition=partition, num_points=num_points , noise_type=noise_type,
rot_mag = rot_mag, trans_mag = trans_mag, partial_p_keep = partial_p_keep)
transforms = torchvision.transforms.Compose(transforms)
datasets = ShapeNet(partition, unseen, transforms, crossval=crossval, train_part=train_part)
elif cfg.DATASET_NAME=='3dmatch':
transforms = get_realdata_transform(partition=partition, num_points=num_points,
rot_mag=rot_mag, trans_mag=trans_mag)
transforms = torchvision.transforms.Compose(transforms)
datasets = Realdata_3dMatch(partition=partition, train_part=train_part, transform=transforms)
else:
print('please input ModelNet40 or 3dmatch')
return datasets
def collate_fn(data: list):
"""
Create mini-batch data2d for training.
:param data: data2d dict
:return: mini-batch
"""
def pad_tensor(inp):
assert type(inp[0]) == torch.Tensor
it = iter(inp)
t = next(it)
max_shape = list(t.shape)
while True:
try:
t = next(it)
for i in range(len(max_shape)):
max_shape[i] = int(max(max_shape[i], t.shape[i]))
except StopIteration:
break
max_shape = np.array(max_shape)
padded_ts = []
for t in inp:
pad_pattern = np.zeros(2 * len(max_shape), dtype=np.int64)
pad_pattern[::-2] = max_shape - np.array(t.shape)
pad_pattern = tuple(pad_pattern.tolist())
padded_ts.append(F.pad(t, pad_pattern, 'constant', 0))
return padded_ts
def stack(inp):
if type(inp[0]) == list:
ret = []
for vs in zip(*inp):
ret.append(stack(vs))
elif type(inp[0]) == dict:
ret = {}
for kvs in zip(*[x.items() for x in inp]):
ks, vs = zip(*kvs)
for k in ks:
assert k == ks[0], "Key value mismatch."
ret[k] = stack(vs)
elif type(inp[0]) == torch.Tensor:
new_t = pad_tensor(inp)
ret = torch.stack(new_t, 0)
elif type(inp[0]) == np.ndarray:
new_t = pad_tensor([torch.from_numpy(x) for x in inp])
ret = torch.stack(new_t, 0)
elif type(inp[0]) == str:
ret = inp
else:
raise ValueError('Cannot handle type {}'.format(type(inp[0])))
return ret
ret = stack(data)
# compute CPU-intensive matrix K1, K2 here to leverage multi-processing nature of dataloader
# if 'Gs' in ret and 'Hs' in ret and :
# try:
# G1_gt, G2_gt = ret['Gs']
# H1_gt, H2_gt = ret['Hs']
# sparse_dtype = np.float32
# K1G = [kronecker_sparse(x, y).astype(sparse_dtype) for x, y in zip(G2_gt, G1_gt)] # 1 as source graph, 2 as target graph
# K1H = [kronecker_sparse(x, y).astype(sparse_dtype) for x, y in zip(H2_gt, H1_gt)]
# K1G = CSRMatrix3d(K1G)
# K1H = CSRMatrix3d(K1H).transpose()
#
# ret['Ks'] = K1G, K1H #, K1G.transpose(keep_type=True), K1H.transpose(keep_type=True)
# except ValueError:
# pass
return ret
def get_dataloader(dataset, shuffle=False):
return torch.utils.data.DataLoader(dataset, batch_size=cfg.DATASET.BATCH_SIZE,
shuffle=shuffle, num_workers=cfg.DATALOADER_NUM,
collate_fn=collate_fn, pin_memory=False)
if __name__ == '__main__':
train = ModelNet40(1024)
test = ModelNet40(1024, 'test')
for data in train:
print(len(data))
break