-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathlpc_lstat.R
executable file
·99 lines (83 loc) · 3.29 KB
/
lpc_lstat.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
#!/appl/R-4.0/bin/Rscript
library(ANTsR)
args<-commandArgs(trailingOnly=T)
# Check that all required command-line arguments are present.
for (i in 1:length(args)) {
cat("Arg", i, args[i],'\n')
}
if (length(args)<4) { stop('Must specify label index and image files, metric file, and output directory.') }
labIndex<-args[1]
labImage<-args[2]
metricFile<-args[3]
if (length(args) == 4) {
outStem<-args[4]
outFile <- paste(outStem,"LabelStats.csv", sep = "_")
} else {
outFile <- gsub(".nii.gz", "_LabelStats.csv", metricFile)
}
# Define the function that will do all the work.
lpc_lstat <- function(labIndexFile,labImageFile,metricFile,exMaskFile=NA,outFile=NA) {
# Read in text file with label indices & names.
# These are csv for DKT31/BrainColor & tsv for Schaefer.
if (tools::file_ext(labIndexFile) == "csv") {
labs<-read.csv(labIndexFile)
} else if (tools::file_ext(labIndexFile) == "tsv") {
labs<-read.table(labIndexFile, sep = "\t", header = TRUE, stringsAsFactors = FALSE)
labs <- labs[ ,c("index","name")]
names(labs) <- c("Label.ID","Label.Name")
}
labs$Volume<-labs$SD<-labs$Max<-labs$Q3<-labs$Mean<-labs$Median<-labs$Q1<-labs$Min<-NA
summvar<-c('Min','Q1','Median','Mean','Q3','Max')
nround<-6
labMask<-antsImageRead(labImageFile,3)
metric<-antsImageRead(metricFile,3)
# Mask the labels to exclude CSF and WM.
segName <- Sys.glob(paste(dirname(labImageFile),'*BrainSegmentation.nii.gz',sep='/'))
brainSeg <- antsImageRead(segName, 3)
labMask <- maskImage(img.in = labMask, img.mask = brainSeg, level = c(2,4,5,6))
# Calculate label volumes and summary statistics.
hdr<-antsImageHeaderInfo(labImageFile)
voxvol<-prod(hdr$spacing)
for (i in 1:nrow(labs)) {
labind<-labs$Label.ID[i]
w<-which(as.numeric(labMask)==labind)
if (length(w)>0) {
x<-as.numeric(metric)[w]
labs[i,summvar]<-summary(x,na.rm=T)
labs$SD[i]<-sd(x,na.rm=T)
labs$Volume[i]<-voxvol*length(w)
}
cat(labs$Label.ID[i], labs$Volume[i],'\n')
}
for (v in c(summvar,'SD')) { labs[,v]<-round(labs[,v],nround) }
# Reshape to long format.
labs<-reshape(labs,direction='long',idvar=c('Label.ID','Label.Name'),varying=
list(c(summvar,'SD','Volume')),v.names='Value',timevar='Type',times=c(summvar,
'SD','Volume'),new.row.names=1:(8*nrow(labs)))
# Get intracranial volume from the volume of the brain extraction mask.
if (is.na(exMaskFile)) {
exMaskFile<-Sys.glob(paste(dirname(labImageFile),'*BrainExtractionMask.nii.gz',sep='/'))
}
icv<-labs[1,]
icv$Label.ID<-NA
icv$Label.Name<-'ICV'
icv$Type<-'IntracranialVolume'
exMask<-antsImageRead(exMaskFile,3)
icv$Value<-voxvol*length(which(as.numeric(exMask)==1))
# Use ICV to normalize regional volumes by head size.
volsub<-subset(labs,labs$Type=='Volume')
volsub$Value<-volsub$Value/icv$Value
volsub$Type<-'NormalizedVolume'
# Put together all the pieces.
labs<-rbind(labs,volsub)
labs<-rbind(labs,icv)
labs<-labs[order(labs$Label.ID,labs$Type),]
# Write results to csv.
if (!is.na(outFile)) {
write.csv(file=outFile,labs,row.names=F)
}
# Also return the results as a data frame (in interactive R sessions).
return(labs)
}
# Call the function and write the results to a csv file.
lstat<-lpc_lstat(labIndexFile = labIndex,labImageFile = labImage,metricFile = metricFile, outFile = outFile)