-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_dyn.py
474 lines (408 loc) · 21.7 KB
/
train_dyn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import os, sys, shutil, time, random
import argparse
import torch
import torch.backends.cudnn as cudnn
from utils import AverageMeter, RecorderMeter, time_string, convert_secs2time
from models import resnet
import numpy as np
from fullg_dyn_data import load_data
########################################################################################################################
# Training Baseline
########################################################################################################################
parser = argparse.ArgumentParser(description='Trains ResNet on CIFAR',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--gpu', type=int, default=0, help='gpu')
parser.add_argument('--lbd', type=float, default=0, help='lbd')
parser.add_argument('--data_path', type=str, default='./data', help='Path to dataset')
parser.add_argument('--dataset', type=str, default='cifar100',choices=['cifar10', 'cifar100'],
help='Choose between Cifar10 and 100.')
parser.add_argument('--arch', type=str, default='resnet18')
# Optimization options
parser.add_argument('--epochs', type=int, default=200, help='Number of epochs to train.')
parser.add_argument('--batch-size', type=int, default=100, help='Batch size.')
parser.add_argument('--learning_rate', type=float, default=0.1, help='The Learning Rate.')
parser.add_argument('--momentum', type=float, default=0.9, help='Momentum.')
parser.add_argument('--decay', type=float, default=0.0005, help='Weight decay (L2 penalty).')
# Checkpoints and Dynamics
parser.add_argument('--print_freq', default=200, type=int, metavar='N', help='print frequency (default: 200)')
parser.add_argument('--save_path', type=str, default='./checkpoint/all-dataset', help='Folder to save checkpoints and log.')
parser.add_argument('--evaluate', dest='evaluate', action='store_true',default= False, help='evaluate model on validation set')
parser.add_argument('--dynamics', action='store_true', help='save training dynamics')
# Acceleration
parser.add_argument('--ngpu', type=int, default=1, help='0 = CPU.')
parser.add_argument('--workers', type=int, default=2, help='number of data loading workers (default: 2)')
# random seed
parser.add_argument('--manualSeed', type=int, default='42', help='manual seed')
args = parser.parse_args()
args.use_cuda = args.ngpu > 0 and torch.cuda.is_available()
args.device = f"cuda:{args.gpu}" if torch.cuda.is_available() else "cpu"
device = args.device
if args.manualSeed is None:
args.manualSeed = random.randint(1, 10000)
random.seed(args.manualSeed)
torch.manual_seed(args.manualSeed)
if args.use_cuda:
torch.cuda.manual_seed_all(args.manualSeed)
cudnn.benchmark = True
def main():
# Init logger
print(args.save_path)
if not os.path.isdir(args.save_path):
os.makedirs(args.save_path)
log = open(os.path.join(args.save_path, 'log_seed_{}.txt'.format(args.manualSeed)), 'w')
print_log('save path : {}'.format(args.save_path), log)
state = {k: v for k, v in args._get_kwargs()}
print_log(state, log)
print_log("Random Seed: {}".format(args.manualSeed), log)
print_log("python version : {}".format(sys.version.replace('\n', ' ')), log)
print_log("torch version : {}".format(torch.__version__), log)
print_log("cudnn version : {}".format(torch.backends.cudnn.version()), log)
print_log("Dataset: {}".format(args.dataset), log)
print_log("Data Path: {}".format(args.data_path), log)
print_log("Network: {}".format(args.arch), log)
print_log("Batchsize: {}".format(args.batch_size), log)
print_log("Learning Rate: {}".format(args.learning_rate), log)
print_log("Momentum: {}".format(args.momentum), log)
print_log("Weight Decay: {}".format(args.decay), log)
# data loading
train_data, train_loader, test_loader, trainloader1, trainloader2, trainloader3, trainloader4, trainloader5, trainloader11, trainloader22, trainloader33, trainloader44, trainloader55 = load_data(args)
if args.dataset == 'cifar10':
args.num_classes = 10
args.num_samples = 50000
args.num_iter = args.num_samples/args.batch_size
if args.dataset == 'cifar100':
args.num_classes = 100
args.num_samples = 50000
args.num_iter = args.num_samples/args.batch_size
print_log("=> creating model '{}'".format(args.arch), log)
# Init model, criterion, and optimizer
net = resnet.__dict__[args.arch](num_class = args.num_classes)
net1 = resnet.__dict__[args.arch](num_class = args.num_classes)
net2 = resnet.__dict__[args.arch](num_class = args.num_classes)
net3 = resnet.__dict__[args.arch](num_class = args.num_classes)
net4 = resnet.__dict__[args.arch](num_class = args.num_classes)
net5 = resnet.__dict__[args.arch](num_class = args.num_classes)
net_new = resnet.__dict__[args.arch](num_class = args.num_classes)
print_log("=> network :\n {}".format(net), log)
#net = torch.nn.DataParallel(net, device_ids=list(range(args.ngpu)))
# define loss function (criterion) and optimizer
criterion = torch.nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
optimizer1 = torch.optim.SGD(net1.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
optimizer2 = torch.optim.SGD(net2.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
optimizer3 = torch.optim.SGD(net3.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
optimizer4 = torch.optim.SGD(net4.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
optimizer5 = torch.optim.SGD(net5.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
optimizer_new = torch.optim.SGD(net_new.parameters(), state['learning_rate'], momentum=state['momentum'],
weight_decay=state['decay'], nesterov=True)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer = optimizer,
T_max = args.epochs * args.num_iter)
scheduler1 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer = optimizer1,
T_max = args.epochs * args.num_iter)
scheduler2 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer = optimizer2,
T_max = args.epochs * args.num_iter)
scheduler3 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer = optimizer3,
T_max = args.epochs * args.num_iter)
scheduler4 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer = optimizer4,
T_max = args.epochs * args.num_iter)
scheduler5 = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer = optimizer5,
T_max = args.epochs * args.num_iter)
if args.use_cuda:
net.to(device)
net1.to(device)
net2.to(device)
net3.to(device)
net4.to(device)
net5.to(device)
net_new.to(device)
criterion.to(device)
recorder = RecorderMeter(args.epochs)
# evaluation
if args.evaluate:
time1 = time.time()
validate(test_loader, args, net, criterion, log) #
time2 = time.time()
print('function took %0.3f ms' % ((time2 - time1) * 1000.0))
return
# Main loop
start_time = time.time()
epoch_time = AverageMeter()
print("model_all train")
for epoch in range(args.epochs):
current_learning_rate = scheduler.get_last_lr()[0]
need_hour, need_mins, need_secs = convert_secs2time(epoch_time.avg * (args.epochs - epoch))
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
print_log(
'\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [learning_rate={:6.4f}]'.format(time_string(), epoch, args.epochs,
need_time, current_learning_rate) \
+ ' [Best : Accuracy={:.2f}, Error={:.2f}]'.format(recorder.max_accuracy(False),
100 - recorder.max_accuracy(False)), log)
# train for one epoch
train_acc, train_los, loss_epoch, output_epoch, index_epoch = train(train_loader, args, net, criterion, optimizer, scheduler, epoch, log)
'''
print("loss_epoch:",loss_epoch)
print("output_epoch:",output_epoch)
print("index_epoch:",index_epoch)
print("len(loss_epoch):",len(loss_epoch))
print("len(output_epoch):",len(output_epoch))
print("len(index_epoch):",len(index_epoch))'''
# evaluate on validation set
val_acc, val_los = validate(test_loader, args, net, criterion, log)
is_best = recorder.update(epoch, train_los, train_acc, val_los, val_acc)
'''
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': net,
'recorder': recorder,
'optimizer': optimizer.state_dict(),
}, is_best, args.save_path, 'checkpoint.pth.tar')
'''
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
recorder.plot_curve(os.path.join(args.save_path, 'curve.png'))
# save training dynamics
'''
if args.dynamics:
dynamics_path = args.save_path+'/npy/'
if not os.path.exists(dynamics_path):
os.makedirs(dynamics_path)
np.save(args.save_path+'/npy/'+ str(epoch) + '_Loss.npy', loss_epoch)
np.save(args.save_path+'/npy/'+ str(epoch) + '_Output.npy', output_epoch)
np.save(args.save_path+'/npy/'+ str(epoch) + '_Index.npy', index_epoch)
print('Epoch '+str(epoch)+' done!')'''
print("mul_model_train")
for epoch in range(args.epochs):
current_learning_rate = scheduler1.get_last_lr()[0]
need_hour, need_mins, need_secs = convert_secs2time(epoch_time.avg * (args.epochs - epoch))
need_time = '[Need: {:02d}:{:02d}:{:02d}]'.format(need_hour, need_mins, need_secs)
print_log(
'\n==>>{:s} [Epoch={:03d}/{:03d}] {:s} [learning_rate={:6.4f}]'.format(time_string(), epoch, args.epochs,
need_time, current_learning_rate) \
+ ' [Best : Accuracy={:.2f}, Error={:.2f}]'.format(recorder.max_accuracy(False),
100 - recorder.max_accuracy(False)), log)
# train for one epoch
train_acc1, train_los1, loss_epoch1, output_epoch1, index_epoch1 = xtrain(trainloader11, trainloader1, args, net, net1, criterion, optimizer1, scheduler1, epoch, log)
train_acc2, train_los2, loss_epoch2, output_epoch2, index_epoch2 = xtrain(trainloader22, trainloader2, args, net, net2, criterion, optimizer2, scheduler2, epoch, log)
train_acc3, train_los3, loss_epoch3, output_epoch3, index_epoch3 = xtrain(trainloader33, trainloader3, args, net, net3, criterion, optimizer3, scheduler3, epoch, log)
train_acc4, train_los4, loss_epoch4, output_epoch4, index_epoch4 = xtrain(trainloader44, trainloader4, args, net, net4, criterion, optimizer4, scheduler4, epoch, log)
train_acc5, train_los5, loss_epoch5, output_epoch5, index_epoch5 = xtrain(trainloader55, trainloader5, args, net, net5, criterion, optimizer5, scheduler5, epoch, log)
output_epoch = np.concatenate([output_epoch1, output_epoch2, output_epoch3, output_epoch4, output_epoch5])
loss_epoch = np.concatenate((loss_epoch1,loss_epoch2,loss_epoch3,loss_epoch4,loss_epoch5),axis=0)
output_epoch = np.concatenate((output_epoch1,output_epoch2,output_epoch3,output_epoch4,output_epoch5),axis=0)
index_epoch = np.concatenate((index_epoch1,index_epoch2,index_epoch3,index_epoch4,index_epoch5),axis=0)
'''
print("loss_epoch:",loss_epoch)
print("output_epoch:",output_epoch)
print("index_epoch:",index_epoch)
print("len(loss_epoch):",len(loss_epoch))
print("len(output_epoch):",len(output_epoch))
print("len(index_epoch):",len(index_epoch))'''
# evaluate on validation set
val_acc, val_los = validate(test_loader, args, net1, criterion, log)
is_best = recorder.update(epoch, train_los1, train_acc1, val_los, val_acc)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': net,
'recorder': recorder,
'optimizer': optimizer.state_dict(),
}, is_best, args.save_path, 'checkpoint.pth.tar')
# measure elapsed time
epoch_time.update(time.time() - start_time)
start_time = time.time()
recorder.plot_curve(os.path.join(args.save_path, 'curve.png'))
# save training dynamics
if args.dynamics:
dynamics_path = args.save_path+'/npy/'
if not os.path.exists(dynamics_path):
os.makedirs(dynamics_path)
np.save(args.save_path+'/npy/'+ str(epoch) + '_Loss.npy', loss_epoch)
np.save(args.save_path+'/npy/'+ str(epoch) + '_Output.npy', output_epoch)
np.save(args.save_path+'/npy/'+ str(epoch) + '_Index.npy', index_epoch)
print('Epoch '+str(epoch)+' done!')
log.close()
# train function (forward, backward, update)
def train(train_loader, args, model, criterion, optimizer, scheduler, epoch, log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for t, (input, target) in enumerate(train_loader):
if args.use_cuda:
y = target[0].to(device)
x = input.to(device)
index = target[1]
input_var = torch.autograd.Variable(x)
target_var = torch.autograd.Variable(y)
# compute output
output = model(input_var)
loss = criterion(output, target_var)
# record training dynamics
loss_batch = torch.nn.functional.cross_entropy(output, target_var, reduce=False).detach().cpu()
index_batch = index
if t==0:
loss_epoch = np.array(loss_batch)
output_epoch = np.array(output.detach().cpu())
index_epoch = np.array(index_batch)
else:
loss_epoch = np.concatenate((loss_epoch, np.array(loss_batch)), axis = 0)
output_epoch = np.concatenate((output_epoch, np.array(output.detach().cpu())), axis = 0)
index_epoch = np.concatenate((index_epoch, np.array(index_batch)), axis = 0)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, y, topk=(1, 5))
losses.update(loss.item(), len(y))
top1.update(prec1.item(), len(y))
top5.update(prec5.item(), len(y))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if t % args.print_freq == 0:
print_log(' Epoch: [{:03d}][{:03d}/{:03d}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f} ({top5.avg:.3f}) '.format(
epoch, t, args.batch_size, batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5) + time_string(), log)
print_log(
' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5,
error1=100 - top1.avg), log)
return top1.avg, losses.avg, loss_epoch, output_epoch, index_epoch
def xtrain(trainloader11, trainloader1, args, model_all, model, criterion, optimizer, scheduler, epoch, log):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
lbd = args.lbd
for t, (input, target) in enumerate(trainloader11):
if args.use_cuda:
y1 = target[0].to(device)
x1 = input.to(device)
input_var1 = torch.autograd.Variable(x1)
target_var1 = torch.autograd.Variable(y1)
# compute output
output1 = model(input_var1)
loss1 = criterion(output1, target_var1)
optimizer.zero_grad()
loss1.backward()
optimizer.step()
scheduler.step()
for t, (input, target) in enumerate(trainloader1):
if args.use_cuda:
y = target[0].to(device)
x = input.to(device)
index = target[1]
input_var = torch.autograd.Variable(x)
target_var = torch.autograd.Variable(y)
# compute output
output_all = model_all(input_var)
output = model(input_var)
loss = criterion(output, target_var)
# record training dynamics
loss_all = torch.nn.functional.cross_entropy(output_all, target_var, reduce=False).detach().cpu()
loss_1 = torch.nn.functional.cross_entropy(output, target_var, reduce=False).detach().cpu()
loss_batch = loss_all + lbd * loss_1
index_batch = index
if t==0:
loss_epoch = np.array(loss_batch)
output_epoch = np.array(output.detach().cpu())
index_epoch = np.array(index_batch)
else:
loss_epoch = np.concatenate((loss_epoch, np.array(loss_batch)), axis = 0)
output_epoch = np.concatenate((output_epoch, np.array(output.detach().cpu())), axis = 0)
index_epoch = np.concatenate((index_epoch, np.array(index_batch)), axis = 0)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, y, topk=(1, 5))
losses.update(loss.item(), len(y))
top1.update(prec1.item(), len(y))
top5.update(prec5.item(), len(y))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if t % args.print_freq == 0:
print_log(' Epoch: [{:03d}][{:03d}/{:03d}] '
'Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f}) '
'Prec@5 {top5.val:.3f} ({top5.avg:.3f}) '.format(
epoch, t, args.batch_size, batch_time=batch_time,
data_time=data_time, loss=losses, top1=top1, top5=top5) + time_string(), log)
print_log(
' **Train** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5,
error1=100 - top1.avg), log)
return top1.avg, losses.avg, loss_epoch, output_epoch, index_epoch
def validate(test_loader, args, model, criterion, log):
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
# switch to evaluate mode
model.eval()
with torch.no_grad():
for i, (input, target) in enumerate(test_loader):
if args.use_cuda:
y = target.to(device)
x = input.to(device)
# compute output
output = model(x)
loss = criterion(output, y)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, y, topk=(1, 5))
losses.update(loss.item(), len(y))
top1.update(prec1.item(), len(y))
top5.update(prec5.item(), len(y))
print_log(' **Test** Prec@1 {top1.avg:.3f} Prec@5 {top5.avg:.3f} Error@1 {error1:.3f}'.format(top1=top1, top5=top5,
error1=100 - top1.avg),
log)
return top1.avg, losses.avg
def print_log(print_string, log):
print("{}".format(print_string))
log.write('{}\n'.format(print_string))
log.flush()
def save_checkpoint(state, is_best, save_path, filename):
filename = os.path.join(save_path, filename)
torch.save(state, filename)
if is_best:
bestname = os.path.join(save_path, 'model_best.pth.tar')
shutil.copyfile(filename, bestname)
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()