-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathps2_mouse.v
547 lines (485 loc) · 17.4 KB
/
ps2_mouse.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
//-------------------------------------------------------------------------------------
//
// Author: John Clayton
// Date : April 30, 2001
// Update: 6/06/01 copied this file from ps2.v (pared down).
// Update: 6/07/01 Finished initial coding efforts.
// Update: 6/09/01 Made minor changes to state machines during debugging.
// Fixed errors in state transitions. Added state to m2
// so that "reset" causes the mouse to be initialized.
// Removed debug port.
//
//
//
//
//
// Description
//-------------------------------------------------------------------------------------
// This is a state-machine driven serial-to-parallel and parallel-to-serial
// interface to the ps2 style mouse. The state diagram for part of the
// m2 state machine was obtained from the work of Rob Chapman, as published
// at:
// www.ee.ualberta.ca/~elliott/ee552/studentAppNotes/1998_w/mouse_notes.html
//
//
// Some aspects of the mouse interface are not implemented (e.g, verifying
// the FA response code from the mouse when enabling streaming mode.)
// However, the mouse interface was designed so that "hot plugging" a mouse
// into the connector should cause the interface to send the F4 code to the
// mouse in order to enable streaming. By this means, the mouse begins to
// operate, and no reset pulse should be needed.
//
// Similarly, there is a "watchdog" timer implemented, so that during periods
// of inactivity, the bit_count is cleared to zero. Therefore, the effects of
// a bad count value are corrected, and internal errors of that type are not
// propagated into subsequent packet receive operations.
//
// To enable the streaming mode, F4 is sent to the mouse.
// The mouse responds with FA to acknowledge the command, and then enters
// streaming mode at the default rate of 100 packets per second (transmission
// of packets ceases when the activity at the mouse is not longer sensed.)
//
// There are additional commands to change the sampling rate and resolution
// of the mouse reported data. Those commands are not implemented here.
// (E8,XX = set resolution 0,1,2,3)
// (E7 = set scaling 2:1)
// (E6 = reset scaling)
// (F3,XX = set sampling rate to XX packets per second.)
//
// At this time I do not know any of the command related to using the
// wheel of a "wheel mouse."
//
// The packets consists of three bytes transmitted in sequence. The interval
// between these bytes has been measured on two different mice, and found to
// be different. On the slower (older) mouse it was approximately 345
// microseconds, while on a newer "wheel" mouse it was approximately 125
// microseconds. The watchdog timer is designed to cause processing of a
// complete packet when it expires. Therefore, the watchdog timer must last
// for longer than the "inter-byte delay" between bytes of the packet.
// I have set the default timer value to 400 usec, for my 49.152 MHz clock.
// The timer value and size of the timer counter is settable by parameters,
// so that other clock frequencies and settings may be used. The setting for
// the watchdog timeout is not critical -- it only needs to be greater than
// the inter-byte delay as data is transmitted from the mouse, and no less
// than 60usec.
//
// Each "byte" of the packet is transmitted from the mouse as follows:
//
// 1 start bit, 8 data bits, 1 odd parity bit, 1 stop bit. == 11 bits total.
// (The data bits are sent LSB first)
//
// The data bits are formatted as follows:
//
// byte 0: YV, XV, YS, XS, 1, 0, R, L
// byte 1: X7..X0
// byte 2: Y7..Y0
//
// Where YV, XV are set to indicate overflow conditions.
// XS, YS are set to indicate negative quantities (sign bits).
// R, L are set to indicate buttons pressed, left and right.
//
//
//
// The interface to the ps2 mouse (like the keyboard) uses clock rates of
// 30-40 kHz, dependent upon the mouse itself. The mouse generates the
// clock.
// The rate at which the state machine runs should be at least twice the
// rate of the ps2_clk, so that the states can accurately follow the clock
// signal itself. Four times oversampling is better. Say 200kHz at least.
// In order to run the state machine extremely fast, synchronizing flip-flops
// have been added to the ps2_clk and ps2_data inputs of the state machine.
// This avoids poor performance related to slow transitions of the inputs.
//
// Because this is a bi-directional interface, while reading from the mouse
// the ps2_clk and ps2_data lines are used as inputs. While writing to the
// mouse, however (which is done when a "packet" of less than 33 bits is
// received), both the ps2_clk and ps2_data lines are sometime pulled low by
// this interface. As such, they are bidirectional, and pullups are used to
// return them to the "high" state, whenever the drivers are set to the
// high impedance state.
//
// Pullups MUST BE USED on the ps2_clk and ps2_data lines for this design,
// whether they be internal to an FPGA I/O pad, or externally placed.
// If internal pullups are used, they may be fairly weak, causing bounces
// due to crosstalk, etc. There is a "debounce timer" implemented in order
// to eliminate erroneous state transitions which would occur based on bounce.
// Parameters are provided to configure the debounce timer for different
// clock frequencies. 2 or 3 microseconds of debounce should be plenty.
// You may possibly use much less, if your pullups are strong.
//
// A parameters is provided to configure a 60 microsecond period used while
// transmitting to the mouse. The 60 microsecond period is guaranteed to be
// more than one period of the ps2_clk signal.
//
//
//-------------------------------------------------------------------------------------
`resetall
`timescale 1ns/100ps
`define TOTAL_BITS 33 // Number of bits in one full packet
module ps2_mouse_interface (
clk,
reset,
ps2_clk,
ps2_data,
left_button,
right_button,
x_increment,
y_increment,
data_ready, // rx_read_o
read, // rx_read_ack_i
error_no_ack
);
// Parameters
// The timer value can be up to (2^bits) inclusive.
parameter WATCHDOG_TIMER_VALUE_PP = 19660; // Number of sys_clks for 400usec.
parameter WATCHDOG_TIMER_BITS_PP = 15; // Number of bits needed for timer
parameter DEBOUNCE_TIMER_VALUE_PP = 186; // Number of sys_clks for debounce
parameter DEBOUNCE_TIMER_BITS_PP = 8; // Number of bits needed for timer
// State encodings, provided as parameters
// for flexibility to the one instantiating the module.
// In general, the default values need not be changed.
// There are three state machines: m1, m2 and m3.
// States chosen as "default" states upon power-up and configuration:
// "m1_clk_h"
// "m2_wait"
// "m3_data_ready_ack"
parameter m1_clk_h = 0;
parameter m1_falling_edge = 1;
parameter m1_falling_wait = 3;
parameter m1_clk_l = 2;
parameter m1_rising_edge = 6;
parameter m1_rising_wait = 4;
parameter m2_reset = 14;
parameter m2_wait = 0;
parameter m2_gather = 1;
parameter m2_verify = 3;
parameter m2_use = 2;
parameter m2_hold_clk_l = 6;
parameter m2_data_low_1 = 4;
parameter m2_data_high_1 = 5;
parameter m2_data_low_2 = 7;
parameter m2_data_high_2 = 8;
parameter m2_data_low_3 = 9;
parameter m2_data_high_3 = 11;
parameter m2_error_no_ack = 15;
parameter m2_await_response = 10;
parameter m3_data_ready = 1;
parameter m3_data_ready_ack = 0;
// I/O declarations
input clk;
input reset;
inout ps2_clk;
inout ps2_data;
output left_button;
output right_button;
output [8:0] x_increment;
output [8:0] y_increment;
output data_ready;
input read;
output error_no_ack;
reg left_button;
reg right_button;
reg [8:0] x_increment;
reg [8:0] y_increment;
reg data_ready;
reg error_no_ack;
// Internal signal declarations
wire watchdog_timer_done;
wire debounce_timer_done;
wire packet_good;
reg [`TOTAL_BITS-1:0] q; // Shift register
reg [2:0] m1_state;
reg [2:0] m1_next_state;
reg [3:0] m2_state;
reg [3:0] m2_next_state;
reg m3_state;
reg m3_next_state;
reg [5:0] bit_count; // Bit counter
reg [WATCHDOG_TIMER_BITS_PP-1:0] watchdog_timer_count;
reg [DEBOUNCE_TIMER_BITS_PP-1:0] debounce_timer_count;
reg ps2_clk_hi_z; // Without keyboard, high Z equals 1 due to pullups.
reg ps2_data_hi_z; // Without keyboard, high Z equals 1 due to pullups.
reg clean_clk; // Debounced output from m1, follows ps2_clk.
reg rising_edge; // Output from m1 state machine.
reg falling_edge; // Output from m1 state machine.
reg output_strobe; // Latches data data into the output registers
//--------------------------------------------------------------------------
// Module code
assign ps2_clk = ps2_clk_hi_z?1'bZ:1'b0;
assign ps2_data = ps2_data_hi_z?1'bZ:1'b0;
// State register
always @(posedge clk)
begin : m1_state_register
if (reset) m1_state <= m1_clk_h;
else m1_state <= m1_next_state;
end
// State transition logic
always @(m1_state
or ps2_clk
or debounce_timer_done
or watchdog_timer_done
)
begin : m1_state_logic
// Output signals default to this value, unless changed in a state condition.
clean_clk <= 0;
rising_edge <= 0;
falling_edge <= 0;
case (m1_state)
m1_clk_h :
begin
clean_clk <= 1;
if (~ps2_clk) m1_next_state <= m1_falling_edge;
else m1_next_state <= m1_clk_h;
end
m1_falling_edge :
begin
falling_edge <= 1;
m1_next_state <= m1_falling_wait;
end
m1_falling_wait :
begin
if (debounce_timer_done) m1_next_state <= m1_clk_l;
else m1_next_state <= m1_falling_wait;
end
m1_clk_l :
begin
if (ps2_clk) m1_next_state <= m1_rising_edge;
else m1_next_state <= m1_clk_l;
end
m1_rising_edge :
begin
rising_edge <= 1;
m1_next_state <= m1_rising_wait;
end
m1_rising_wait :
begin
clean_clk <= 1;
if (debounce_timer_done) m1_next_state <= m1_clk_h;
else m1_next_state <= m1_rising_wait;
end
default : m1_next_state <= m1_clk_h;
endcase
end
// State register
always @(posedge clk)
begin : m2_state_register
if (reset) m2_state <= m2_reset;
else m2_state <= m2_next_state;
end
// State transition logic
always @(m2_state
or q
or falling_edge
or rising_edge
or watchdog_timer_done
or bit_count
or packet_good
or ps2_data
or clean_clk
)
begin : m2_state_logic
// Output signals default to this value, unless changed in a state condition.
ps2_clk_hi_z <= 1;
ps2_data_hi_z <= 1;
error_no_ack <= 0;
output_strobe <= 0;
case (m2_state)
m2_reset : // After reset, sends command to mouse.
begin
m2_next_state <= m2_hold_clk_l;
end
m2_wait :
begin
if (falling_edge) m2_next_state <= m2_gather;
else m2_next_state <= m2_wait;
end
m2_gather :
begin
if (watchdog_timer_done && (bit_count == `TOTAL_BITS))
m2_next_state <= m2_verify;
else if (watchdog_timer_done && (bit_count < `TOTAL_BITS))
m2_next_state <= m2_hold_clk_l;
else m2_next_state <= m2_gather;
end
m2_verify :
begin
if (packet_good) m2_next_state <= m2_use;
else m2_next_state <= m2_wait;
end
m2_use :
begin
output_strobe <= 1;
m2_next_state <= m2_wait;
end
// The following sequence of 9 states is designed to transmit the
// "enable streaming mode" command to the mouse, and then await the
// response from the mouse. Upon completion of this operation, the
// receive shift register contains 22 bits of data which are "invalid"
// therefore, the m2_verify state will fail to validate the data, and
// control will be passed into the m2_wait state once again (but the
// mouse will then be enabled, and valid data packets will ensue whenever
// there is activity on the mouse.)
m2_hold_clk_l :
begin
ps2_clk_hi_z <= 0; // This starts the watchdog timer!
if (watchdog_timer_done && ~clean_clk) m2_next_state <= m2_data_low_1;
else m2_next_state <= m2_hold_clk_l;
end
m2_data_low_1 :
begin
ps2_data_hi_z <= 0; // Forms start bit, d[0] and d[1]
if (rising_edge && (bit_count == 3))
m2_next_state <= m2_data_high_1;
else m2_next_state <= m2_data_low_1;
end
m2_data_high_1 :
begin
ps2_data_hi_z <= 1; // Forms d[2]
if (rising_edge && (bit_count == 4))
m2_next_state <= m2_data_low_2;
else m2_next_state <= m2_data_high_1;
end
m2_data_low_2 :
begin
ps2_data_hi_z <= 0; // Forms d[3]
if (rising_edge && (bit_count == 5))
m2_next_state <= m2_data_high_2;
else m2_next_state <= m2_data_low_2;
end
m2_data_high_2 :
begin
ps2_data_hi_z <= 1; // Forms d[4],d[5],d[6],d[7]
if (rising_edge && (bit_count == 9))
m2_next_state <= m2_data_low_3;
else m2_next_state <= m2_data_high_2;
end
m2_data_low_3 :
begin
ps2_data_hi_z <= 0; // Forms parity bit
if (rising_edge) m2_next_state <= m2_data_high_3;
else m2_next_state <= m2_data_low_3;
end
m2_data_high_3 :
begin
ps2_data_hi_z <= 1; // Allow mouse to pull low (ack pulse)
if (falling_edge && ps2_data) m2_next_state <= m2_error_no_ack;
else if (falling_edge && ~ps2_data)
m2_next_state <= m2_await_response;
else m2_next_state <= m2_data_high_3;
end
m2_error_no_ack :
begin
error_no_ack <= 1;
m2_next_state <= m2_error_no_ack;
end
// In order to "cleanly" exit the setting of the mouse into "streaming"
// data mode, the state machine should wait for a long enough time to
// ensure the FA response is done being sent by the mouse. Unfortunately,
// this is tough to figure out, since the watchdog timeout might be longer
// or shorter depending upon the user. If the watchdog timeout is set to
// a small enough value (less than about 560 usec?) then the bit_count
// will get reset to zero by the watchdog before the FA response is
// received. In that case, bit_count will be 11.
// If the bit_count is not reset by the watchdog, then the
// total bit_count will be 22.
// In either case, when this state is reached, the watchdog timer is still
// running and it is best to let it expire before returning to normal
// operation. One easy way to do this is to check for the bit_count to
// reach 22 (which it will always do when receiving a normal packet) and
// then jump to "verify" which will always fail for that time.
m2_await_response :
begin
if (bit_count == 22) m2_next_state <= m2_verify;
else m2_next_state <= m2_await_response;
end
default : m2_next_state <= m2_wait;
endcase
end
// State register
always @(posedge clk)
begin : m3_state_register
if (reset) m3_state <= m3_data_ready_ack;
else m3_state <= m3_next_state;
end
// State transition logic
always @(m3_state or output_strobe or read)
begin : m3_state_logic
case (m3_state)
m3_data_ready_ack:
begin
data_ready <= 1'b0;
if (output_strobe) m3_next_state <= m3_data_ready;
else m3_next_state <= m3_data_ready_ack;
end
m3_data_ready:
begin
data_ready <= 1'b1;
if (read) m3_next_state <= m3_data_ready_ack;
else m3_next_state <= m3_data_ready;
end
default : m3_next_state <= m3_data_ready_ack;
endcase
end
// This is the bit counter
always @(posedge clk)
begin
if (reset) bit_count <= 0; // normal reset
else if (falling_edge) bit_count <= bit_count + 1;
else if (watchdog_timer_done) bit_count <= 0; // rx watchdog timer reset
end
// This is the shift register
always @(posedge clk)
begin
if (reset) q <= 0;
else if (falling_edge) q <= {ps2_data,q[`TOTAL_BITS-1:1]};
end
// This is the watchdog timer counter
// The watchdog timer is always "enabled" to operate.
always @(posedge clk)
begin
if (reset || rising_edge || falling_edge) watchdog_timer_count <= 0;
else if (~watchdog_timer_done)
watchdog_timer_count <= watchdog_timer_count + 1;
end
assign watchdog_timer_done = (watchdog_timer_count==WATCHDOG_TIMER_VALUE_PP-1);
// This is the debounce timer counter
always @(posedge clk)
begin
if (reset || falling_edge || rising_edge) debounce_timer_count <= 0;
// else if (~debounce_timer_done)
else debounce_timer_count <= debounce_timer_count + 1;
end
assign debounce_timer_done = (debounce_timer_count==DEBOUNCE_TIMER_VALUE_PP-1);
// This is the logic to verify that a received data packet is "valid"
// or good.
assign packet_good = (
(q[0] == 0)
&& (q[10] == 1)
&& (q[11] == 0)
&& (q[21] == 1)
&& (q[22] == 0)
&& (q[32] == 1)
&& (q[9] == ~^q[8:1]) // odd parity bit
&& (q[20] == ~^q[19:12]) // odd parity bit
&& (q[31] == ~^q[30:23]) // odd parity bit
);
// Output the special scan code flags, the scan code and the ascii
always @(posedge clk)
begin
if (reset)
begin
left_button <= 0;
right_button <= 0;
x_increment <= 0;
y_increment <= 0;
end
else if (output_strobe)
begin
left_button <= q[1];
right_button <= q[2];
x_increment <= {q[5],q[19:12]};
y_increment <= {q[6],q[30:23]};
end
end
endmodule
//`undefine TOTAL_BITS