-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain.py
executable file
·547 lines (476 loc) · 24.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
import argparse
import logging
import os
import time
import hydra
import numpy as np
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from hydra.core.hydra_config import HydraConfig
from omegaconf import DictConfig, OmegaConf
from torch.cuda.amp import autocast, GradScaler
from torch.nn import functional as F
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.utils.data import DataLoader
from torch.utils.data.sampler import WeightedRandomSampler
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
import models.commons as commons
import utils
from data_utils import (
FeatureAudioSpeakerLoader,
FeatureAudioSpeakerCollate,
BucketBatchSampler,
DistributedSamplerWrapper,
DistributedBucketSampler
)
from models import (
SynthesizerTrn,
MultiPeriodDiscriminator
)
from losses import (
generator_loss,
discriminator_loss,
feature_loss,
kl_loss
)
from mel_processing import mel_processing
assert torch.cuda.is_available(), "CPU training is not allowed."
torch.backends.cudnn.benchmark = True
os.environ['TORCH_DISTRIBUTED_DEBUG'] = 'INFO'
logger = logging.getLogger(__name__)
class Trainer:
def __init__(self, config: DictConfig, run_dir, logger):
print(OmegaConf.to_yaml(config))
self.logger = logger
self.config = config
self.run_dir = run_dir
if config.model.save_dir is None:
self.save_dir = self.run_dir
else:
self.save_dir = config.model.save_dir
self.step = 1
self.epoch = 0
self.n_data_loader_workers = self.config.data.num_workers
self.scaler = GradScaler(enabled=config.train.fp16_run)
def _train_step(self, net_g, net_d, optim_g, optim_d, c, spec, y, pitch, spk=None, lang_id=None, rank=0, writer=None, writer_valid=None):
self.logger.debug(f"c: {c.shape if c is not None else None}, spec: {spec.shape}, y: {y.shape}, pitch: {pitch.shape}, g: {spk.shape if spk is not None else None}")
spec = spec.cuda(rank, non_blocking=True)
y = y.cuda(rank, non_blocking=True)
pitch = pitch.cuda(rank, non_blocking=True)
if c is not None:
c = c.cuda(rank, non_blocking=True)
mel = mel_processing.spec_to_mel_torch(
spec,
self.config.data.filter_length,
self.config.data.n_mel_channels,
self.config.data.sampling_rate,
self.config.data.mel_fmin,
self.config.data.mel_fmax)
with autocast(enabled=self.config.train.fp16_run):
y_hat, ids_slice, z_mask,\
(z, z_p, m_p, logs_p, m_q, logs_q) = net_g(
spec=spec, y=y, c=c, g=spk, mel=mel, pitch=pitch, lang_id=lang_id
)
y_mel = commons.slice_segments(
mel, ids_slice, self.config.train.segment_size // self.config.data.hop_length)
y_hat_mel = mel_processing.mel_spectrogram_torch(
y_hat.squeeze(1),
self.config.data.filter_length,
self.config.data.n_mel_channels,
self.config.data.sampling_rate,
self.config.data.hop_length,
self.config.data.win_length,
self.config.data.mel_fmin,
self.config.data.mel_fmax
)
y = commons.slice_segments(
y, ids_slice * self.config.data.hop_length, self.config.train.segment_size) # slice
# Discriminator
y_d_hat_r, y_d_hat_g, _, _ = net_d(y, y_hat.detach())
with autocast(enabled=False):
loss_disc, losses_disc_r, losses_disc_g = discriminator_loss(
y_d_hat_r, y_d_hat_g)
loss_disc_all = loss_disc
optim_d.zero_grad()
self.scaler.scale(loss_disc_all).backward()
self.scaler.unscale_(optim_d)
grad_norm_d = commons.clip_grad_value_(net_d.parameters(), None)
self.scaler.step(optim_d)
with autocast(enabled=self.config.train.fp16_run):
# Generator
y_d_hat_r, y_d_hat_g, fmap_r, fmap_g = net_d(y, y_hat)
with autocast(enabled=False):
loss_mel = F.l1_loss(y_mel, y_hat_mel) * \
self.config.train.c_mel
loss_kl = kl_loss(z_p, logs_q, m_p, logs_p,
z_mask) * self.config.train.c_kl
loss_fm = feature_loss(fmap_r, fmap_g)
loss_gen, losses_gen = generator_loss(y_d_hat_g)
loss_gen_all = loss_gen + loss_fm + loss_mel + loss_kl
optim_g.zero_grad()
self.scaler.scale(loss_gen_all).backward()
self.scaler.unscale_(optim_g)
grad_norm_g = commons.clip_grad_value_(net_g.parameters(), None)
self.scaler.step(optim_g)
self.scaler.update()
if rank == 0:
if self.step % self.config.train.log_interval == 0:
lr = optim_g.param_groups[0]['lr']
losses = {
"disc": loss_disc,
"gen": loss_gen,
"fm": loss_fm,
"mel": loss_mel,
"kl": loss_kl
}
info = {k: float(losses[k]) for k in losses}
info["epoch"] = self.epoch
info["step"] = self.step
info["lr"] = lr
self.logger.info(str(info))
scalar_dict = {
"loss/g/total": loss_gen_all,
"loss/d/total": loss_disc_all,
"learning_rate": lr,
"grad_norm_d": grad_norm_d,
"grad_norm_g": grad_norm_g
}
scalar_dict.update(
{"loss/g/fm": loss_fm, "loss/g/mel": loss_mel, "loss/g/kl": loss_kl})
scalar_dict.update(
{"loss/g/{}".format(i): v for i, v in enumerate(losses_gen)})
scalar_dict.update(
{"loss/d_r/{}".format(i): v for i, v in enumerate(losses_disc_r)})
scalar_dict.update(
{"loss/d_g/{}".format(i): v for i, v in enumerate(losses_disc_g)})
image_dict = {
"slice/mel_org": utils.plot_spectrogram_to_numpy(y_mel[0].data.cpu().numpy()),
"slice/mel_gen": utils.plot_spectrogram_to_numpy(y_hat_mel[0].data.cpu().numpy()),
"all/mel": utils.plot_spectrogram_to_numpy(mel[0].data.cpu().numpy()),
}
utils.summarize(
writer=writer,
global_step=self.step,
images=image_dict,
scalars=scalar_dict)
self.step += 1
def _train_one_epoch(self, nets, optims, train_loader, valid_loader=None, rank=0, writer=None, writer_valid=None):
assert valid_loader is not None or rank != 0, "Validation loader is required for rank 0"
self.logger.info("Start training epoch {}...".format(self.epoch))
net_g, net_d = nets
optim_g, optim_d = optims
train_loader.batch_sampler.set_epoch(self.epoch)
net_g.train()
net_d.train()
if rank==0:
self.evaluate(generator=net_g, valid_loader=valid_loader, writer_valid=writer_valid)
for batch_idx, items in tqdm(enumerate(train_loader), total=len(train_loader)):
try:
if self.config.data.use_spk_emb and not self.config.data.get("use_lang_emb", False):
c, spec, y, pitch, spk = items
spk = spk.cuda(rank, non_blocking=True)
elif self.config.data.use_spk_emb and self.config.data.get("use_lang_emb", False):
c, spec, y, pitch, spk, lang_id = items
spk = spk.cuda(rank, non_blocking=True)
lang_id = lang_id.cuda(rank, non_blocking=True)
elif self.config.data.get("use_lang_emb", False) and not self.config.data.use_spk_emb:
c, spec, y, pitch, lang_id = items
spk = None
lang_id = lang_id.cuda(rank, non_blocking=True)
else:
c, spec, y, pitch = items
spk = None
lang_id = None
self._train_step(
net_g=net_g,
net_d=net_d,
optim_g=optim_g,
optim_d=optim_d,
c=c,
spec=spec,
y=y,
pitch=pitch,
spk=spk,
lang_id=lang_id,
rank=rank,
writer=writer
)
if rank==0 and self.step % self.config.train.valid_steps_interval == 0:
self.evaluate(generator=net_g, valid_loader=valid_loader, writer_valid=writer_valid)
if rank==0 and self.step % self.config.train.save_steps_interval == 0:
utils.save_checkpoint(net_g, optim_g, self.config.train.learning_rate, self.epoch, os.path.join(
self.save_dir, f"G_{self.epoch:05d}_{self.step:07d}.pth"))
utils.save_checkpoint(net_d, optim_d, self.config.train.learning_rate, self.epoch, os.path.join(
self.save_dir, f"D_{self.epoch:05d}_{self.step:07d}.pth"))
except Exception as e: # TODO: temporary here because there was some issues in the dataset
logger.error(f"Error on step {self.step} (might indicate a problem with the dataset): {str(e)}")
if self.config.train.raise_error:
raise e
def evaluate(self, generator, valid_loader, writer_valid=None):
self.logger.info("Evaluating...")
generator.eval()
with torch.no_grad():
for batch_idx, items in tqdm(enumerate(valid_loader)):
if self.config.data.use_spk_emb and not self.config.data.get("use_lang_emb", False):
c, spec, y, pitch, spk = items
g = spk[:1].cuda(0)
lang_id = None
elif self.config.data.use_spk_emb and self.config.data.get("use_lang_emb", False):
c, spec, y, pitch, spk, lang_id = items
g = spk[:1].cuda(0)
lang_id = lang_id.cuda(0)
elif self.config.data.get("use_lang_emb", False) and not self.config.data.use_spk_emb:
c, spec, y, pitch, lang_id = items
g = None
lang_id = lang_id.cuda(0)
else:
c, spec, y, pitch = items
g = None
lang_id = None
spec, y, pitch = spec[:1].cuda(0), y[:1].cuda(0), pitch[:1].cuda(0)
if c is not None:
c = c[:1].cuda(0)
mel = mel_processing.spec_to_mel_torch(
spec,
self.config.data.filter_length,
self.config.data.n_mel_channels,
self.config.data.sampling_rate,
self.config.data.mel_fmin,
self.config.data.mel_fmax)
y_hat = generator.module.infer(c=c, y=y, g=g, mel=mel, pitch=pitch, lang_id=lang_id)
y_hat_mel = mel_processing.mel_spectrogram_torch(
y_hat.squeeze(1).float(),
self.config.data.filter_length,
self.config.data.n_mel_channels,
self.config.data.sampling_rate,
self.config.data.hop_length,
self.config.data.win_length,
self.config.data.mel_fmin,
self.config.data.mel_fmax
)
# TODO: add more metrics
if writer_valid:
image_dict = {
f"gen/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(y_hat_mel[0].cpu().numpy()),
f"gt/mel_{batch_idx}": utils.plot_spectrogram_to_numpy(mel[0].cpu().numpy())
}
audio_dict = {
f"gen/audio_{batch_idx}": y_hat[0],
f"gt/audio_{batch_idx}": y[0]
}
utils.summarize(
writer=writer_valid,
global_step=self.step,
images=image_dict,
audios=audio_dict,
audio_sampling_rate=self.config.data.sampling_rate
)
generator.train()
def get_dataset_samples_weight(self, dataset_attributes):
key_names = np.array(dataset_attributes)
attr_names_samples = key_names
unique_attr_names = np.unique(attr_names_samples).tolist()
attr_idx = [unique_attr_names.index(l) for l in tqdm(attr_names_samples)]
attr_count = np.array(
[len(np.where(attr_names_samples == l)[0]) for l in tqdm(unique_attr_names)])
weight_attr = 1.0 / attr_count
self.logger.debug(
"Using weighted batch sampling with the following weights:")
for k, w in zip(unique_attr_names, weight_attr):
self.logger.debug(
f"{k.ljust(max([len(s) for s in key_names]))}: {w:.4f}")
dataset_samples_weight = np.array(
[weight_attr[l] for l in attr_idx])
dataset_samples_weight = dataset_samples_weight / \
np.linalg.norm(dataset_samples_weight)
dataset_samples_weight = torch.from_numpy(
dataset_samples_weight).float()
return dataset_samples_weight
def train(self, rank=0, n_gpus=1):
self.logger.info("Creating train dataloader")
train_dataset = FeatureAudioSpeakerLoader(
self.config.data.training_files, self.config)
if self.config.train.weighted_batch_speaker_sampling or self.config.train.weighted_batch_lang_sampling:
self.logger.info("Configuring weighted batch sampling. This may take a while...")
if self.config.train.weighted_batch_speaker_sampling:
dataset_samples_weight_spk = self.get_dataset_samples_weight(train_dataset.speakers)
self.logger.debug(dataset_samples_weight_spk)
if self.config.train.weighted_batch_lang_sampling:
dataset_samples_weight_lang = self.get_dataset_samples_weight(train_dataset.lang)
self.logger.debug(dataset_samples_weight_lang)
if self.config.train.weighted_batch_speaker_sampling and self.config.train.weighted_batch_lang_sampling:
dataset_samples_weight = (
dataset_samples_weight_spk*self.config.train.weighted_batch_speaker_sampling +
dataset_samples_weight_lang*self.config.train.weighted_batch_lang_sampling
)
elif self.config.train.weighted_batch_speaker_sampling:
dataset_samples_weight = dataset_samples_weight_spk*self.config.train.weighted_batch_speaker_sampling
elif self.config.train.weighted_batch_lang_sampling:
dataset_samples_weight = dataset_samples_weight_lang*self.config.train.weighted_batch_lang_sampling
w_sampler = WeightedRandomSampler(
dataset_samples_weight, len(dataset_samples_weight))
batch_sampler = BucketBatchSampler(
w_sampler,
data=train_dataset,
batch_size=self.config.train.batch_size,
sort_key=lambda x: os.path.getsize(x[0]),
drop_last=True)
train_sampler = DistributedSamplerWrapper(batch_sampler,
num_replicas=n_gpus,
rank=rank,
shuffle=True)
collate_fn = FeatureAudioSpeakerCollate(self.config, train_dataset)
train_loader = DataLoader(train_dataset,
num_workers=self.n_data_loader_workers,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler)
else:
train_sampler = DistributedBucketSampler(
train_dataset,
self.config.train.batch_size,
[32, 300, 400, 500, 600, 700, 800, 900, 1000],
num_replicas=n_gpus,
rank=rank,
shuffle=True)
collate_fn = FeatureAudioSpeakerCollate(self.config, train_dataset)
train_loader = DataLoader(train_dataset,
num_workers=self.config.data.num_workers,
shuffle=False,
pin_memory=True,
collate_fn=collate_fn,
batch_sampler=train_sampler)
if rank == 0:
self.logger.info("Creating valid dataloader")
valid_dataset = FeatureAudioSpeakerLoader(
self.config.data.validation_files, self.config)
valid_loader = DataLoader(valid_dataset,
num_workers=0,
shuffle=True,
batch_size=1,
pin_memory=False,
drop_last=False,
collate_fn=collate_fn)
writer_train = SummaryWriter(log_dir=os.path.join(
self.run_dir, self.config.tb_log_dir, "train"))
writer_valid = SummaryWriter(log_dir=os.path.join(
self.run_dir, self.config.tb_log_dir, "valid"))
if self.config.train.distributed:
dist.init_process_group(
backend='nccl', init_method='env://', world_size=n_gpus, rank=rank)
torch.manual_seed(self.config.seed)
torch.cuda.set_device(rank)
self.logger.info("Creating models...")
net_g = SynthesizerTrn(
self.config.data.filter_length // 2 + 1,
self.config.train.segment_size // self.config.data.hop_length,
config=self.config,
**self.config.model,
).cuda(rank)
net_d = MultiPeriodDiscriminator(
self.config.model.use_spectral_norm).cuda(rank)
optim_g = torch.optim.AdamW(
net_g.parameters(),
self.config.train.learning_rate,
betas=self.config.train.betas,
eps=self.config.train.eps)
optim_d = torch.optim.AdamW(
net_d.parameters(),
self.config.train.learning_rate,
betas=self.config.train.betas,
eps=self.config.train.eps)
if self.config.train.distributed:
net_g = DDP(net_g, device_ids=[rank])
net_d = DDP(net_d, device_ids=[rank])
self.logger.info("\nDiscriminator:" + str(net_d))
self.logger.info("\nGenerator:" + str(net_g))
if self.config.train.resume_training:
self.logger.info(
f"Resuming training from checkpoint at {self.run_dir}")
generator_path = utils.latest_checkpoint_path(
self.run_dir, "G_*.pth")
discriminator_path = utils.latest_checkpoint_path(
self.run_dir, "D_*.pth")
if generator_path is not None and discriminator_path is not None:
_, _, _, epoch_str = utils.load_checkpoint(
generator_path, net_g, optim_g)
_, _, _, epoch_str = utils.load_checkpoint(
discriminator_path, net_d, optim_d)
self.step = (epoch_str - 1) * len(train_loader)
else:
self.logger.info(
"No checkpoint found. Starting from scratch...")
epoch_str = 1
else:
if self.config.model.finetune_from_model.generator:
self.logger.info(f"Finetuning from model {self.config.model.finetune_from_model.generator}")
net_g = utils.load_weights(net_g, self.config.model.finetune_from_model.generator, strict=False).cuda(rank)
if self.config.model.finetune_from_model.discriminator:
self.logger.info(f"Finetuning from model {self.config.model.finetune_from_model.discriminator}")
net_d = utils.load_weights(net_d, self.config.model.finetune_from_model.discriminator, strict=False).cuda(rank)
epoch_str = 1
self.epoch = int(epoch_str)
scheduler_g = torch.optim.lr_scheduler.ExponentialLR(
optim_g, gamma=self.config.train.lr_decay, last_epoch=epoch_str-2)
scheduler_d = torch.optim.lr_scheduler.ExponentialLR(
optim_d, gamma=self.config.train.lr_decay, last_epoch=epoch_str-2)
self.nets = net_g, net_d
self.optimizers = optim_g, optim_d
self.schedulers = scheduler_g, scheduler_d
self.logger.info("Start training")
for epoch in range(int(self.epoch), int(self.config.train.epochs) + 1):
self.epoch = epoch
start_time = time.time()
if rank == 0:
self._train_one_epoch(rank=rank,
nets=[net_g, net_d],
optims=[optim_g, optim_d],
train_loader=train_loader,
valid_loader=valid_loader,
writer=writer_train,
writer_valid=writer_valid)
if self.epoch % self.config.train.valid_epoch_interval == 0:
self.evaluate(generator=net_g, valid_loader=valid_loader, writer_valid=writer_valid)
if self.epoch % self.config.train.save_epoch_interval == 0:
utils.save_checkpoint(net_g, optim_g, self.config.train.learning_rate, self.epoch, os.path.join(
self.save_dir, f"G_{self.epoch:05d}_{self.step:07d}.pth"))
utils.save_checkpoint(net_d, optim_d, self.config.train.learning_rate, self.epoch, os.path.join(
self.save_dir, f"D_{self.epoch:05d}_{self.step:07d}.pth"))
else:
self._train_one_epoch(rank=rank,
nets=[net_g, net_d],
optims=[optim_g, optim_d],
train_loader=train_loader)
if rank == 0:
self.logger.info("End of epoch {} | Time: {:.3f}s".format(
self.epoch, time.time() - start_time))
scheduler_g.step()
scheduler_d.step()
@hydra.main(version_base=None,
config_path="configs",
config_name="config")
def main(cfg: DictConfig):
run_dir = HydraConfig.get().run.dir
logger.setLevel(cfg.log_level)
logger.info("Log level: {}".format(cfg.log_level))
logger.info(HydraConfig.get())
trainer = Trainer(cfg, run_dir, logger)
n_gpus = torch.cuda.device_count()
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(cfg.train.port)
if cfg.train.distributed and n_gpus > 1:
if not cfg.train.use_multiprocessing:
raise ValueError(
"Distributed training is only supported in multiprocessing mode.")
if cfg.train.use_multiprocessing:
# TODO: add hydra logging support for mp.spawn
logger.warning(
"Logging is not supported in multiprocessing mode. See https://github.com/facebookresearch/hydra/issues/1126")
mp.spawn(trainer.train, nprocs=n_gpus, args=(n_gpus,))
else:
trainer.train(n_gpus=n_gpus)
if __name__ == "__main__":
main()