-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathstack prob.R
953 lines (873 loc) · 39.4 KB
/
stack prob.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
ipak <- function(pkg){
new.pkg <- pkg[!(pkg %in% installed.packages()[, "Package"])]
if (length(new.pkg))
install.packages(new.pkg, dependencies = TRUE)
sapply(pkg, require, character.only = TRUE)
}
packages <- c("stringr","dplyr","entropy","ggplot2","ggseqlogo","gridExtra","cluster","seqinr","collapsibleTree","data.tree","DiagrammeR","stringdist","igraph","networkD3","plsgenomics","shinycssloaders","shiny","shinyFiles","shinyjs","shinyBS","DT","plotly","xtable","tictoc")
ipak(packages)
cdr3_generator <- function(n,l=20) {
a <- do.call(paste0, replicate(l, sample(c("A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y"), n, TRUE), FALSE))
}
udata=data.frame(AA.JUNCTION=cdr3_generator(1000),stringsAsFactors = F)
udata$ID=row.names(udata)
#data <- read.csv(file.choose(), header = TRUE, sep = ";")
#data <- read.csv("data/SampleData.csv", header = TRUE, sep = ";")
# Usefull Data
#udata <- data[c(1,3)]
udata$AA.JUNCTION <- as.character(udata$AA.JUNCTION)
# A list with the similarity groups
sim = list("F","W",c("A","I","L","V"),c("M","C"),"P","G","Y",c("T","S"),c("H","K","R"),c("E","D"),c("Q","N"))
# Naming the group of similarities
names(sim) = c("F","W","Al","Su","P","G","Y","Hy","Ba","Ac","Am")
altsim = list("F","W",c("A","I","L","V"),c("M","C"),"P","G","Y",c("T","S"),c("H","K","R"),c("E","D"),c("Q","N"))
# Naming the group of similarities
names(altsim) = c("f","w","a","s","p","g","y","h","b","c","m")
# A table with the letters
let = c("A","C","D","E","F","G","H","I","K","L","M","N","P","Q","R","S","T","V","W","Y") # The letters matrix
# An empty vector wich will store the level for every cluster
clep = vector('numeric')
br = 0 # Initial value of branch
cl = 0 # Initial value of new clusters
met = 0 # Initial value of level capacity counter
ep = 1 # Initial value of level
d = 0
udata$clusters = 0 # Initialiaze the column clusters with 0
udata$level.0 = 0 # Initialize the column of cl.0 with 0
udata$temp= 0 # Creating a temp column with 0
nn = FALSE # Initial value for the condition sumper < endper%
endper = 90 # Set the percentage, which ends the programm
listxx = list() # Initialize a list for saving the permat of all branches
listyy = list()
dfsum = data.frame(sumper = numeric(0),sumper2 = numeric(0),branch = numeric(0), len = numeric(0))
dfsd = data.frame(ff = character(0),Average_Identity_Value = numeric(0),Identity_Standar_Deviation = numeric(0),Average_Similarity_Value = numeric(0), Similarity_Standar_Deviation = numeric(0), stringsAsFactors = FALSE)
ggdf = data.frame(branch = numeric(0), len = numeric(0))
last = 0
listq = list("ggdf" = ggdf, "dfsum" = dfsum,"list" = listxx, "listn" = listyy,"udata" = udata,"permat"= NA, "persim" = NA, "br" = br, "cl" = cl, "met" = met, "ep" = ep , "clep" = clep, "nn" = nn, "sumper" = NA,"sumper2" = NA, "ela" = NA, "cel" = NA,"endper" = endper, "last" = last)
#list1 = listq
#list1 = result5
Matrices <- function(list1,leaf){
udata = list1$udata
permat = list1$permat
persim = list1$persim
br = list1$br
cl = list1$cl
listxx = list1$list
listyy = list1$listn
mymat = matrix(0,nrow=length(let) + 1, ncol=str_length(udata$AA.JUNCTION[1]))
permat = matrix(0,nrow=length(let) + 1, ncol=str_length(udata$AA.JUNCTION[1]))
simmat = matrix(0,nrow = length(sim),ncol =str_length(udata$AA.JUNCTION[1]))
persim = matrix(0,nrow = length(sim)+1,ncol =str_length(udata$AA.JUNCTION[1]))
rownames(mymat) = c(let,"Entropy")
rownames(permat) = c(let,"Entropy")
rownames(simmat) = c("F","W","Al","Su","P","G","Y","Hy","Ba","Ac","Am")
rownames(persim) = c("F","W","Al","Su","P","G","Y","Hy","Ba","Ac","Am","Entropy")
#print(udata)
for (i in 1:str_length(udata[udata$clusters == br,]$AA.JUNCTION[1])) {
f <- table(str_sub(udata[udata$clusters == br,]$AA.JUNCTION,i,i)) # A table with the letters from a specific position
k = 1
sum =0
for(j in 1:length(let)){
if (names(f[k]) == let[j] && k <= length(f)){ # We create the mymat with the values of the previous table and zeroes to other letters
mymat[j,i] = f[k]
d = str_which(sim,let[j]) # We determine the group of every letter and we create the simmat
simmat[d,i] = simmat[d,i] + f[k]
k = k + 1
} else{
mymat[j,i] = 0
}
permat[j,i] = (mymat[j,i] / length(udata[udata$clusters == br,]$AA.JUNCTION)) * 100 # We calculate the percentage matrix
persim[d,i] = (simmat[d,i] / length(udata[udata$clusters == br,]$AA.JUNCTION)) * 100 # We calculate the percentage matrix for similarity groups
}
permat[j+1,i] = entropy(f,base=exp(1)) # We calculate the entropy for every position (row 21)
persim[length(sim)+1,i] = entropy(simmat[,i],base = exp(1)) # We calculate the entropy for every position (row 12)
}
listxx$temp = permat
names(listxx)[length(listxx)] = sprintf('permat_br.%d', br) # Save the permat with this format
listyy$temp = persim
names(listyy)[length(listyy)] = sprintf('persim_br.%d', br)
#print(udata[1:10,])
result1=list("ggdf" = list1$ggdf, "dfsum" = list1$dfsum,"list" = listxx,"listn" = listyy, "udata" = udata,"permat"= permat, "persim" = persim, "br" = br, "cl" = cl, "met" = list1$met, "ep" = list1$ep, "clep" = list1$clep, "nn" = list1$nn, "sumper" =list1$sumper,"sumper2" = list1$sumper2, "ela" = list1$ela, "cel" = list1$cel, "endper" = list1$endper, "last" = list1$last)
if ( leaf == TRUE){
Finish(result1,TRUE)
}else{
Finish(result1,FALSE)
}
}
#list2 = result1
algo = "Identity"
Finish <- function(list2,leaf){
udata = list2$udata
permat = list2$permat
persim = list2$persim
sumper = list2$sumper # The total percentage of permat
sumper2 = list2$sumper2 # The total percentage of persim
endper = list2$endper
dfsum = list2$dfsum
br = list2$br
cl = list2$cl
nn = list2$nn
last = list2$last
t1 =which(permat[-length(permat),] == 100,arr.ind = TRUE)
sumper = (length(as.numeric(t1[,2]))* 100) / str_length(udata$AA.JUNCTION[1])
t2 =which(persim[-length(persim),] == 100,arr.ind = TRUE)
sumper2 = (length(as.numeric(t2[,2]))* 100) / str_length(udata$AA.JUNCTION[1])
if(algo == "Identity"){
if (sumper > endper){
nn = TRUE # When nn = TRUE the percentage of sumper < endper%
if (sumper2 > endper){
last = last+1
#print(br)
#print(cl)
#print(last)
if (last == 1 && leaf == FALSE && sumper != 100){
clmax = cl
brtemp = br
while (brtemp < clmax) {
brtemp = brtemp +1
print(brtemp)
print(clmax)
print(last)
list2 = list("ggdf" = list2$ggdf, "dfsum" = list2$dfsum,"list" = list2$list, "listn" = list2$listn, "udata" = list2$udata,"permat"= list2$permat, "persim" = list2$persim, "br" = brtemp, "cl" = list2$cl, "met" = list2$met, "ep"= list2$ep, "clep" = list2$clep,"nn" = list2$nn, "sumper" = list2$sumper, "sumper2" = list2$sumper2, "ela" = list2$ela, "cel" = list2$cel,"endper" = list2$endper, "last" = last)
list2 = Matrices(list2,TRUE)
}
}
return(list2) # End of the programm, returning the final list
}
}
}else{
if (sumper2 > endper){
last = last+1
if (last == 1){
clmax = cl
brtemp = br
while (brtemp < clmax) {
brtemp = brtemp +1
list2 = list("ggdf" = list2$ggdf, "dfsum" = list2$dfsum,"list" = list2$list, "listn" = list2$listn, "udata" = list2$udata,"permat"= list2$permat, "persim" = list2$persim, "br" = brtemp, "cl" = list2$cl, "met" = list2$met, "ep"= list2$ep, "clep" = list2$clep,"nn" = list2$nn, "sumper" = list2$sumper, "sumper2" = list2$sumper2, "ela" = list4$ela, "cel" = list2$cel,"endper" = list2$endper, "last" = last)
list2 = Matrices(list2,TRUE)
}
}
return(list2) # End of the programm, returning the final list
}
}
vv = length(udata[udata$clusters == br,]$AA.JUNCTION)
dfsum[nrow(dfsum) + 1,] = c(sumper,sumper2,br,vv)
result2 = list("ggdf" = list2$ggdf, "dfsum" = dfsum,"list" = list2$list, "listn" = list2$listn, "udata" = list2$udata,"permat"= list2$permat, "persim" = list2$persim, "br" = list2$br, "cl" = list2$cl, "met" = list2$met, "ep"= list2$ep, "clep" = list2$clep,"nn" = nn, "sumper" = sumper, "sumper2" = sumper2, "ela" = list2$ela, "cel" = list2$cel,"endper" = list2$endper, "last" = last)
if ( leaf == TRUE){
nn = FALSE
result2 = list("ggdf" = list2$ggdf, "dfsum" = dfsum,"list" = list2$list, "listn" = list2$listn, "udata" = list2$udata,"permat"= list2$permat, "persim" = list2$persim, "br" = list2$br, "cl" = list2$cl, "met" = list2$met, "ep"= list2$ep, "clep" = list2$clep,"nn" = nn, "sumper" = sumper, "sumper2" = sumper2, "ela" = list2$ela, "cel" = list2$cel,"endper" = list2$endper, "last" = last)
return(result2)
}else{
Choice(result2)
}
}
#list3 = result2
algocol = 0
# Function Choice choose which matrix cell will be used for the division of the data
Choice <- function(list3){
nn = list3$nn
br = list3$br
cl = list3$cl
if(nn == TRUE || (algo == "Similarity") ){
permat = list3$persim # If sumper < endper% we want to check only the persim matrix
}else{
permat =list3$permat # Else permat and if it is necessary the persim matrix
persim = list3$persim
}
cel = which(permat[,(algocol + 1):ncol(permat)] == max(permat[,(algocol + 1):ncol(permat)]), arr.ind = TRUE)
ela = 1
poss = max(permat[,(algocol + 1):ncol(permat)])
if (max(permat[,(algocol + 1):ncol(permat)]) == 100){ # We exclude the 100 % from the max values
cel = which(permat[,(algocol + 1):ncol(permat)] == max(permat[,(algocol + 1):ncol(permat)][permat[,(algocol + 1):ncol(permat)]!=max(permat[,(algocol + 1):ncol(permat)])]), arr.ind = TRUE) # The desired cell
poss = max(permat[,(algocol + 1):ncol(permat)][permat[,(algocol + 1):ncol(permat)]!=max(permat[,(algocol + 1):ncol(permat)])])
}
if(poss == 0){
clmax = cl
brtemp = br
while (brtemp < clmax) {
brtemp = brtemp +1
print(brtemp)
list3 = list("ggdf" = list3$ggdf, "dfsum" = list3$dfsum,"list" = list3$list, "listn" = list3$listn, "udata" = list3$udata,"permat"= list3$permat, "persim" = list3$persim, "br" = brtemp, "cl" = list3$cl, "met" = list3$met, "ep"= list3$ep, "clep" = list3$clep,"nn" = list3$nn, "sumper" = list3$sumper, "sumper2" = list3$sumper2, "ela" = list3$ela, "cel" = list3$cel,"endper" = list3$endper, "last" = list3$last)
list3 = Matrices(list3,TRUE)
}
return(list3)
}
if(algo == "Identity"){
if ((length(cel)/2) > 1){
eqcol = vector('numeric') # A vector for the cell's rows with the same entropy
j = 1
for(i in 1:(length(cel)/2)){
if (permat[,(algocol + 1):ncol(permat)][nrow(permat[,(algocol + 1):ncol(permat)]),cel[i,2]] < permat[,(algocol + 1):ncol(permat)][nrow(permat[,(algocol + 1):ncol(permat)]),cel[ela,2]]) { # If the percentage is the same (cel multidimensional) we keep the cel with the lowest entropy
ela = i
eqcol[] = 0
eqcol[1] = i
j = 2
}else if(permat[,(algocol + 1):ncol(permat)][nrow(permat[,(algocol + 1):ncol(permat)]),cel[i,2]] == permat[nrow(permat[,(algocol + 1):ncol(permat)]),cel[ela,2]]){
eqcol[j] = i
j = j+1
}
}
eqcol <- eqcol[-which(eqcol == 0)]
if (length(eqcol)>1 && nn == FALSE){ # If the vector has 2 or more numbers means that we have columns with the same entropy and nn = FALSE in order not to double check the persim
ela = eqcol[1]
meg = persim[,(algocol + 1):ncol(persim)][str_which(sim,let[cel[ela,1]]),cel[ela,2]]
for(i in 2:length(eqcol)){
if(persim[,(algocol + 1):ncol(persim)][str_which(sim,let[cel[eqcol[i],1]]),cel[eqcol[i],2]] > meg){ # We find the maximum percentage of the similarity percentage marix
meg = persim[,(algocol + 1):ncol(persim)][str_which(sim,let[cel[eqcol[i],1]]),cel[eqcol[i],2]]
ela = eqcol[i]
} else if (persim[,(algocol + 1):ncol(persim)][str_which(sim,let[cel[eqcol[i],1]]),cel[eqcol[i],2]] == meg){ # If the percentage is the same we use the entropy
if(persim[,(algocol + 1):ncol(persim)][nrow(persim[,(algocol + 1):ncol(persim)]),cel[eqcol[i],2]] < persim[,(algocol + 1):ncol(persim)][nrow(persim[,(algocol + 1):ncol(persim)]),cel[ela,2]]){
ela = i
}
}
}
}
}
}else{
if ((length(cel)/2) > 1){
ela = 1
for(i in 2:(length(cel)/2)){
if (permat[,(algocol + 1):ncol(permat)][nrow(permat[,(algocol + 1):ncol(permat)]),cel[i,2]] < permat[,(algocol + 1):ncol(permat)][nrow(permat[,(algocol + 1):ncol(permat)]),cel[ela,2]]) { # If the percentage is the same (cel multidimensional) we keep the cel with the lowest entropy
ela = i
}
}
}
}
nn = FALSE # Return nn in it's original value
result3 = list("ggdf" = list3$ggdf, "dfsum" = list3$dfsum,"list" = list3$list, "listn" = list3$listn, "udata" = list3$udata,"permat"= list3$permat, "persim" = list3$persim, "br" = list3$br, "cl" = list3$cl, "met" = list3$met, "ep"= list3$ep, "clep" = list3$clep,"nn" = nn, "sumper" = list3$sumper, "sumper2" = list3$sumper2, "ela" = ela, "cel" = cel,"endper" = list3$endper, "last" = list3$last)
Divide(result3)
}
#list4 = result3
# Function Divide divide the data into 2 new clusters and updates the column with the right level
Divide <- function(list4){
ggdf = list4$ggdf
udata = list4$udata
br = list4$br
cel = list4$cel
ela = list4$ela
cl = list4$cl
met = list4$met
ep = list4$ep
if (met == 0){ # If we need a new level, then we create a new column with its name (level.ep)
udata$temp = NA
names(udata)[length(udata)] = sprintf('level.%d', ep)
}
if (algo == "Identity"){
x1 = str_which(str_detect(str_sub(udata[udata$clusters == br,]$AA.JUNCTION,(cel[ela,2]+algocol),(cel[ela,2]+algocol)), let[cel[ela,1]]), "TRUE")
mk = length(x1)
cltp = cl + 1
ggdf[nrow(ggdf) + 1,] = c(cltp,mk)
y1 = udata[udata$clusters == br,]$AA.JUNCTION
z1 = y1[x1]
x2 = str_which(str_detect(str_sub(udata[udata$clusters == br,]$AA.JUNCTION,(cel[ela,2]+algocol),(cel[ela,2]+algocol)), let[cel[ela,1]]), "FALSE")
mk = length(x2)
cltp = cl + 2
ggdf[nrow(ggdf) + 1,] = c(cltp,mk)
y2 = udata[udata$clusters == br,]$AA.JUNCTION
z2 = y2[x2]
lengdif = FALSE
if(length(z1)<length(x2)){
lengdif = TRUE
templeng = z1
z1 = z2
z2 = templeng
}
for(i in 1:length(z1)){
udata[str_which(udata$AA.JUNCTION,z1[i]),sprintf('level.%d', ep)] = cl+1
}
for(i in 1:length(z2)){
udata[str_which(udata$AA.JUNCTION,z2[i]),sprintf('level.%d', ep)] = cl+2
}
if(lengdif == TRUE){
udata[udata$clusters == br,]$clusters <- ifelse(str_detect(str_sub(udata[udata$clusters == br,]$AA.JUNCTION,(cel[ela,2]+algocol),(cel[ela,2]+algocol)), let[cel[ela,1]]), cl+2 ,cl+1)
}else{
udata[udata$clusters == br,]$clusters <- ifelse(str_detect(str_sub(udata[udata$clusters == br,]$AA.JUNCTION,(cel[ela,2]+algocol),(cel[ela,2]+algocol)), let[cel[ela,1]]), cl+1 ,cl+2)
}
}else{
strings.to.find = unlist(sim[cel[ela,1]])
x1 = str_which(str_detect(str_sub(udata[udata$clusters == br,]$AA.JUNCTION,(cel[ela,2]+algocol),(cel[ela,2]+algocol)), str_c(strings.to.find, collapse="|")), "TRUE")
mk = length(x1)
cltp = cl + 1
ggdf[nrow(ggdf) + 1,] = c(cltp,mk)
y1 = udata[udata$clusters == br,]$AA.JUNCTION
z1 = y1[x1]
x2 = str_which(str_detect(str_sub(udata[udata$clusters == br,]$AA.JUNCTION,(cel[ela,2]+algocol),(cel[ela,2]+algocol)), str_c(strings.to.find, collapse="|")), "FALSE")
mk = length(x2)
cltp = cl + 2
ggdf[nrow(ggdf) + 1,] = c(cltp,mk)
y2 = udata[udata$clusters == br,]$AA.JUNCTION
z2 = y2[x2]
for(i in 1:length(z1)){
udata[str_which(udata$AA.JUNCTION,z1[i]),sprintf('level.%d', ep)] = cl+1
}
for(i in 1:length(z2)){
udata[str_which(udata$AA.JUNCTION,z2[i]),sprintf('level.%d', ep)] = cl+2
}
udata[udata$clusters == br,]$clusters <- ifelse(str_detect(str_sub(udata[udata$clusters == br,]$AA.JUNCTION,(cel[ela,2]+algocol),(cel[ela,2]+algocol)), str_c(strings.to.find, collapse="|")), cl+1 ,cl+2)
}
result4 = list("ggdf" = ggdf,"dfsum" = list4$dfsum,"list" = list4$list, "listn" = list4$listn, "udata" = udata,"permat"= list4$permat, "persim" = list4$persim, "br" = list4$br, "cl" = list4$cl, "met" = list4$met, "ep"= list4$ep, "clep" = list4$clep,"nn" = list4$nn, "sumper" = list4$sumper, "sumper2" = list4$sumper2, "ela" = list4$ela, "cel" = list4$cel,"endper" = list4$endper, "last" = list4$last)
Control(result4)
}
#list5 = result4
# Function Control update the branch, the counter and the cluster numbers in order to begin a new valid sub-division
Control <- function(list5){
udata = list5$udata
br = list5$br
cel = list5$cel
ela = list5$ela
cl = list5$cl
met = list5$met
clep = list5$clep
ep = list5$ep
clep[cl+1] = ep # Level of the cluster cl+1
clep[cl+2] = ep # Level of the cluster cl+2
br = br + 1 # Increase the branch by 1
cl = cl + 2 # Increase the cluster by 2
met = met + 2 # Increase the counter by 2
list5 = list("ggdf" = list5$ggdf, "dfsum" = list5$dfsum,"list" = list5$list, "listn" = list5$listn, "udata" = list5$udata,"permat"= list5$permat, "persim" = list5$persim, "br" = br, "cl" = cl, "met" = met, "ep"= ep, "clep" = clep,"nn" = list5$nn, "sumper" = list5$sumper, "sumper2" = list5$sumper2, "ela" = list5$ela, "cel" = list5$cel,"endper" = list5$endper, "last" = list5$last)
if( ((clep[br-1] < clep[br]) && (sum(clep == clep[br]) != (2^clep[br]))) == TRUE && (length(which(udata$clusters == br)) > 10) ){ # If the next branch is in the next level
met = geomSeq(1,2,1,50)[ep+1]
}
while (length(which(udata$clusters == br)) <= 10){ # While the number of sequences in the branch is less than 2, go to the next branch and change counter
if(is.na(str_length(udata[udata$clusters == br,]$AA.JUNCTION[1]))){
return(list5)
}
list5 = Matrices(list5, TRUE)
if(is.na(((clep[br] < clep[br+1]) && (sum(clep == clep[br]) != (2^clep[br]))))){
return(list5)
}
if( ((clep[br] < clep[br+1]) && (sum(clep == clep[br]) != (2^clep[br]))) == TRUE ){ # If the next branch is in the next level
met = 0
ep = ep + 1
br = br + 1
}else{
br = br + 1
met = met +2
}
list5 = list("ggdf" = list5$ggdf, "dfsum" = list5$dfsum,"list" = list5$list, "listn" = list5$listn, "udata" = list5$udata,"permat"= list5$permat, "persim" = list5$persim, "br" = br, "cl" = cl, "met" = met, "ep"= ep, "clep" = clep,"nn" = list5$nn, "sumper" = list5$sumper, "sumper2" = list5$sumper2, "ela" = list5$ela, "cel" = list5$cel,"endper" = list5$endper, "last" = list5$last)
}
if( met == geomSeq(1,2,1,50)[ep+1]){ # When the counter reaches the end value (geometric sequence) we increase the level counter
met = 0
ep = ep + 1
}
result5 = list("ggdf" = list5$ggdf, "dfsum" = list5$dfsum,"list" = list5$list, "listn" = list5$listn, "udata" = list5$udata,"permat"= list5$permat, "persim" = list5$persim, "br" = br, "cl" = cl, "met" = met, "ep"= ep, "clep" = clep,"nn" = list5$nn, "sumper" = list5$sumper, "sumper2" = list5$sumper2, "ela" = list5$ela, "cel" = list5$cel,"endper" = list5$endper, "last" = list5$last)
Matrices(result5,FALSE)
}
# A function that generates a geometric sequence
geomSeq <- function(start,ratio,begin,end){
begin=begin-1
end=end-1
start*ratio**(begin:end)
}
algo = "Identity"
algocol = 0
tic()
lastlist = Matrices(listq,FALSE)
toc()
# The final name of udata data frame
df = lastlist$udata
# A list with the permat matrix for every branch
perlist = lastlist$list
persimlist = lastlist$listn
# Create a dataframe with all clusters and their identity and similarity percentage
ff = lastlist$dfsum
ff$level[1]= 0
ff$level[2:(length(lastlist$clep[ff$branch]) +1 )] = lastlist$clep[ff$branch] #without leaves
Clus = as.data.frame(matrix(100, ncol = 3, nrow = max(df$clusters)+1))
names(Clus) = c("ClusterId","Identity","Similarity")
Clus$ClusterId = 0:max(df$clusters)
Clus$seqnum[1] = nrow(df)
Clus$seqnum[2:(max(df$clusters)+1)] = lastlist$ggdf$len
Clus$level = c(0,lastlist$clep)
for(i in 1:length(ff$branch) ){
ll = which(Clus$ClusterId == ff$branch[i])
Clus$Identity[ll] = ff$sumper[i]
Clus$Similarity[ll] = ff$sumper2[i]
}
lev = 5
Den <- function(lev){
df = df[ do.call( order , df[ , match( colnames(df[str_which(names(df), "level.")]) , names(df) ) ] ) , ]
df_args <- c(df[str_which(names(df), "level.")], sep="/")
if(lev == max(lastlist$clep)){
df$pathString<- do.call(paste, df_args)
kk = df$pathString
for(i in 1:length(kk)){
temp = str_locate(kk[i],"/NA")
if(is.na(temp[1]) == FALSE){
temp2 = str_sub(kk[i], 1, temp[1]-1);
kk[i] = temp2
}
}
}else{
df$pathString<- do.call(paste, df_args)
kk = df$pathString
gg =as.data.frame(str_locate_all(kk,"/"))
tem = 1
for (i in 1:length(kk)){
kk[i] = str_sub(kk[i],1,gg[,tem][lev+1]-1)
tem = tem + 2
}
for(i in 1:length(kk)){
temp = str_locate(kk[i],"/NA")
if(is.na(temp[1]) == FALSE){
temp2 = str_sub(kk[i], 1, temp[1]-1);
kk[i] = temp2
}
}
}
df$pathString = kk
x <- ToDataFrameTree(df, "pathstring")
xN <- as.Node(x)
plot(xN)
}
# Create custom colour scheme
cs1 = make_col_scheme(chars=c("F","W","A","I","L","V","M","C","P","G","Y","T","S","H","K","R","E","D","Q","N"),
cols=c("#1E90FF", "#BA55D3", "#0000FF", "#0000FF", "#0000FF", "#0000FF", "#C6E2FF", "#C6E2FF", "#FFD700", "#00EE00", "#C1FFC1", "#54FF9F", "#54FF9F", "#FF0000", "#FF0000", "#FF0000", "#FFD700", "#FFD700", "#ED9121", "#ED9121"))
# A function to plot with logo level lev
LogoLev <- function(lev,lastlist,df){
t1 = which(lastlist$clep == lev)
listff = list()
if(length(t1) %% 3 == 0){
nc = length(t1)%/%3
}else{
nc = length(t1)%/%3 + 1
}
for(i in 1:length(t1)){
x1 = as.data.frame(na.omit(df[df[which(names(df) == sprintf("level.%d", lev))] == t1[i], ]$AA.JUNCTION))
names(x1)[1]= "AA.JUNCTION"
x1 = as.character(x1$AA.JUNCTION)
listff$temp = x1
names(listff)[length(listff)] = sprintf('Cluster.%d', t1[i])
}
ggseqlogo(listff, ncol=nc, method = "prob",col_scheme=cs1)
}
# Creating a plot for cluster 5 for example
LogoCl <- function(cl,lastlist,df){
ggseqlogo(na.omit(df[df[names(df) == sprintf('level.%d', lastlist$clep[cl])] == cl,]$AA.JUNCTION), method = "prob", col_scheme=cs1)
}
# A function to plot with barplot level lev
BarLev <- function(lev,lastlist,perlist,persimlist,Clus,let,sim,cho){
if(cho == "Identity"){
t2 = which(lastlist$clep == lev)
if(length(t2) %% 3 == 0){
par(mfrow = c(length(t2)%/%3,3))
}else{
par(mfrow = c(length(t2)%/%3 + 1,3))
}
for(i in 1:length(t2)){
ar = str_which(names(perlist),as.character(t2[i]))[1]
par(xpd=TRUE)
output <- matrix(unlist(perlist[ar]), ncol = str_length(lastlist$udata$AA.JUNCTION[1]), byrow = FALSE)
barplot(output[-nrow(output),], col=heat.colors(length(output[,1])-1), width=2, main = sprintf('Cluster.%d', t2[i]))
legend("topright",inset=c(-0.03,0), fill=heat.colors(length(output[,1])-1), legend=let,cex = 0.6)
}
}else{
t2 = which(lastlist$clep == lev)
if(length(t2) %% 3 == 0){
par(mfrow = c(length(t2)%/%3,3))
}else{
par(mfrow = c(length(t2)%/%3 + 1,3))
}
for(i in 1:length(t2)){
ar = str_which(names(persimlist),as.character(t2[i]))[1]
par(xpd=TRUE)
output <- matrix(unlist(persimlist[ar]), ncol = str_length(lastlist$udata$AA.JUNCTION[1]), byrow = FALSE)
barplot(output[-nrow(output),], col=heat.colors(length(output[,1])-1), width=2, main = sprintf('Cluster.%d', t2[i]))
legend("topright",inset=c(-0.03,0), fill=heat.colors(length(output[,1])-1), legend=names(sim),cex = 0.6)
}
}
}
# An alternative plot for cluster 3 (We must determine the cluster's permat)
BarCl <- function(cl,perlist,persimlist,Clus,let,sim,cho,lastlist){
if(cho == "Identity"){
par(mar=c(3,3,4,4),xpd=TRUE)
output <- matrix(unlist(perlist[cl]), ncol = str_length(lastlist$udata$AA.JUNCTION[1]), byrow = FALSE)
barplot(output[-nrow(output),], col=heat.colors(length(output[,1])-1), width=2, main = sprintf('Cluster.%d',cl))
legend("topright",inset=c(-0.03,0), fill=heat.colors(length(output[,1])-1), legend=let,cex = 0.6)
}else{
par(mar=c(3,3,4,4),xpd=TRUE)
output <- matrix(unlist(persimlist[cl]), ncol = str_length(lastlist$udata$AA.JUNCTION[1]), byrow = FALSE)
barplot(output[-nrow(output),], col=heat.colors(length(output[,1])-1), width=2, main = sprintf('Cluster.%d',cl))
legend("topright",inset=c(-0.03,0), fill=heat.colors(length(output[,1])-1), legend=names(sim),cex = 0.6)
}
}
# Sequences and Id's for specific level
AminoLev <- function(level,lastlist,df,Clus){
sum(Clus[Clus$level == level,]$seqnum) # akoloy8ies sto level
x4 = data_frame("Sequence.ID" = character(0),"AA.JUNCTION" = character(0))
gg = na.omit(unique(df[,which(names(df) == sprintf("level.%d", level))]))
for(i in 1:length(gg)){
clust = gg[i]
x3 = data.frame(na.omit(df[df[which(names(df) == sprintf("level.%d", lastlist$clep[clust]))] == clust, ]$Sequence.ID), na.omit(df[df[which(names(df) == sprintf("level.%d", lastlist$clep[clust]))] == clust, ]$AA.JUNCTION))
names(x3) = c("Sequence.ID","AA.JUNCTION")
se = x3$Sequence.ID
aa = as.character(x3$AA.JUNCTION)
aa = as.list(aa)
names(aa) = se
x4 = rbind(x4,x3)
}
se2 = x4$Sequence.ID
aa2 = as.character(x4$AA.JUNCTION)
aa2 = as.list(aa2)
names(aa2) = se2
x4 # Print in console
}
# Sequences and Id's for specific cluster
AminoCl <- function(clust){
if(clust == 0){
x3 = data.frame("Sequence.ID" = df$Sequence.ID, "AA.JUNCTION" = df$AA.JUNCTION)
}else{
#lastlist$clep[clust]
x3 = data.frame(na.omit(df[df[which(names(df) == sprintf("level.%d", lastlist$clep[clust]))] == clust, ]$Sequence.ID), na.omit(df[df[which(names(df) == sprintf("level.%d", lastlist$clep[clust]))] == clust, ]$AA.JUNCTION))
names(x3) = c("Sequence.ID","AA.JUNCTION")
se = x3$Sequence.ID
aa = as.character(x3$AA.JUNCTION)
aa = as.list(aa)
names(aa) = se
}
x3 # Print in console
}
# A function which visualize the sequences of a data frame using common letters (i.e. "A _ _ _ _ K R _ _ _ Q _ Y Y Y _ _ _ T _")
Opt <- function(df){
xar <- matrix(0,nrow=1, ncol=str_length(df$AA.JUNCTION[1]))
for (i in 1:str_length(df$AA.JUNCTION[1])) {
f <- table(str_sub(df$AA.JUNCTION,i,i))
xar[i] = "_"
if (f[1] == nrow(df)){
xar[i] = names(f[1])
}
}
paste(xar,collapse = ' ')
}
# A function which visualize the sequences of a data frame using similarity groups (i.e. "A _ _ _ _ K Am _ Ba _ Ac _ Y Y Y _ _ _ T _")
Opt2 <- function(df,alt){
xar <- matrix(0,nrow=1, ncol=str_length(df$AA.JUNCTION[1]))
for (i in 1:str_length(df$AA.JUNCTION[1])) {
f <- table(str_sub(df$AA.JUNCTION,i,i))
xar[i] = "_"
if (f[1] == nrow(df)){
xar[i] = names(f[1])
}else{
y = TRUE
d = str_which(sim,names(f[1]))
for(j in 2:length(f)){
y = y && str_detect(sim[d],names(f[j]))
}
if( y == TRUE){
if(alt == TRUE){
xar[i] = names(altsim[d])
}else{
xar[i] = names(sim[d])
}
}
}
}
paste(xar,collapse = ' ')
}
Id <- function(ff,cho){
if(cho == "Identity"){
par(xpd=TRUE)
pp <- data.frame(x = ff$level,y = ff$sumper)
ggplot(pp,aes(x = x,y = y)) + stat_sum()
}else{
par(xpd=TRUE)
pp <- data.frame(x = ff$level,y = ff$sumper2)
ggplot(pp,aes(x = x,y = y)) + stat_sum()
}
}
cc <- function(df,Clus){
df = df[ do.call( order , df[ , match( colnames(df[str_which(names(df), "level.")]) , names(df) ) ] ) , ]
ii = Clus$seqnum
ii = as.character(ii)
trid1 = df[str_which(names(df), "level.")] # Data frame with identities percentage
kk1 = trid1
trsim = df[str_which(names(df), "level.")] # Data frame with similarities percentage
iii = df[str_which(names(df), "level.")]
for(i in 1:length(trid1)){
tempg = trid1[,i]+1
trid1[i] = round(Clus$Identity[tempg],digits = 2)
temph = trsim[,i]+1
trsim[i] = round(Clus$Similarity[temph], digits = 2)
tempi = iii[,i] + 1
iii[i] = ii[tempi]
}
for(i in 2:length(str_which(names(df), "level."))){
trid1[,i] = paste(kk1[,i],iii[,i],trid1[,i], trsim[,i],sep = " ")
for(j in 1:nrow(df)){
if(str_detect(trid1[j,i],"NA") == TRUE){
trid1[j,i] = NA
}
}
}
collapsibleTree(
trid1,
hierarchy = colnames(df[str_which(names(df), "level.")]),
fill = c("jj",ii),
width = 1820,
height = 775,
collapsed = FALSE
)
}
idenlev <- function(lev,Clus,cho){
if(cho == "Identity"){
sum(Clus[Clus$level == lev,]$Identity) / length(Clus[Clus$level == lev,]$Identity)
}else{
sum(Clus[Clus$level == lev,]$Similarity) / length(Clus[Clus$level == lev,]$Similarity)
}
}
idencl <- function(cl,Clus,cho){
if(cho == "Identity"){
Clus[Clus$ClusterId == cl,]$Identity
}else{
Clus[Clus$ClusterId == cl,]$Similarity
}
}
EmPin <- function(lastlist,Clus,dfsd){
for (i in 0:(max(lastlist$clep))) {
t1 = sum(Clus[Clus$level == i,]$Identity) / length(Clus[Clus$level == i,]$Identity)
t2 = sd(Clus[Clus$level == i,]$Identity)
t3 = sum(Clus[Clus$level == i,]$Similarity) / length(Clus[Clus$level == i,]$Similarity)
t4 = sd(Clus[Clus$level == i,]$Similarity)
rows = sprintf("level.%d", i)
dfsd[i+1,] = c(rows,t1,t2,t3,t4)
}
colnames(dfsd)[1]="Level"
dfsd
}
lev = 3
Netw <- function(lev,thr,thrt,netyp,df,lastlist,Clus){
df = df[ do.call( order , df[ , match( colnames(df[str_which(names(df), "level.")]) , names(df) ) ] ) , ]
df_args <- c(df[str_which(names(df), "level.")], sep="/")
if(lev == max(lastlist$clep)){
df$pathString<- do.call(paste, df_args)
kk = df$pathString
for(i in 1:length(kk)){
temp = str_locate(kk[i],"/NA")
if(is.na(temp[1]) == FALSE){
temp2 = str_sub(kk[i], 1, temp[1]-1);
kk[i] = temp2
}
}
}else{
df$pathString<- do.call(paste, df_args)
#df$pathString <- paste(df$level.0, df$level.1, df$level.2 ,df$level.3 ,df$level.4 ,df$level.5 ,df$level.6 ,df$level.7 ,df$level.8 ,df$level.9,df$level.10 ,df$level.11 ,df$level.12 ,df$level.13 ,df$level.14 ,df$level.15 ,df$level.16, df$level.17, df$level.18, df$level.19 , sep = "/")
kk = df$pathString
gg =as.data.frame(str_locate_all(kk,"/"))
tem = 1
for (i in 1:length(kk)){
kk[i] = str_sub(kk[i],1,gg[,tem][lev+1]-1)
tem = tem + 2
}
for(i in 1:length(kk)){
temp = str_locate(kk[i],"/NA")
if(is.na(temp[1]) == FALSE){
temp2 = str_sub(kk[i], 1, temp[1]-1);
kk[i] = temp2
}
}
}
df$pathString = kk
x <- ToDataFrameTree(df, "pathstring")
xN <- as.Node(x)
bo = which(lastlist$clep == lev)
ffg = matrix(NA,nrow = max(bo)+1,ncol = (max(bo)+1)) # the distance between 2 Nodes
ffg2 = matrix(NA,nrow = max(bo)+1,ncol = (max(bo)+1)) # the string distance between 2 Nodes (string from function Opt())
ffg2sim = matrix(NA,nrow = max(bo)+1,ncol = (max(bo)+1))
ffg3 = matrix(NA,nrow = max(bo)+1,ncol = (max(bo)+1)) # the final distance combining ffg and ffg2
tic()
# anw trigwnikos
for(i in 1:(max(bo)+1)){
tempN1 = FindNode(xN,(sprintf("%d", i-1)))
tempN1 = tempN1$path
temp2N1 = Opt(AminoCl(i-1))
temp3N1 = Opt2(AminoCl(i-1),TRUE)
for(j in i:(max(bo)+1)){ # max(df$clusters)+1
tempN2 = FindNode(xN,(sprintf("%d", j-1)))
tempN2 = tempN2$path
tem = which(tempN1 == tempN2)
tempN1[tem[length(tem)]]
d1 = length(tempN1) - tem[length(tem)]
d2 = length(tempN2) - tem[length(tem)]
ffg[i,j]= d1 + d2
temp2N2 = Opt(AminoCl(j-1))
temp2N2 = str_replace_all(temp2N2,"_"," ")
temp3N2 = Opt2(AminoCl(j-1),TRUE)
temp3N2 = str_replace_all(temp3N2,"_"," ")
ffg2[i,j] = stringdist(temp2N1,temp2N2,method = "lv" )
ffg2sim[i,j] = stringdist(temp3N1,temp3N2,method = "lv" )
ffg2sim[i,j]
if( i == j ){
ffg2[i,j] = str_length(lastlist$udata$AA.JUNCTION[1]) #gia na mhn fainontai velakia pisw
ffg2sim[i,j] = str_length(lastlist$udata$AA.JUNCTION[1])
}
}
}
toc()
vffg = vector('numeric')
vffg2 = vector('numeric')
vffg2sim = vector('numeric')
vffg3 = vector('numeric')
temp = 1
tic()
# anw trigwnikos
for(i in 1:(max(bo)+1)){
tempN1 = FindNode(xN,(sprintf("%d", i-1)))
tempN1 = tempN1$path
temp2N1 = Opt(AminoCl(i-1))
temp3N1 = Opt2(AminoCl(i-1),TRUE)
for(j in i:(max(bo)+1)){ # max(df$clusters)+1
tempN2 = FindNode(xN,(sprintf("%d", j-1)))
tempN2 = tempN2$path
tem = which(tempN1 == tempN2)
tempN1[tem[length(tem)]]
d1 = length(tempN1) - tem[length(tem)]
d2 = length(tempN2) - tem[length(tem)]
ffg[i,j]= d1 + d2
ffg2[i,j] = ifelse(i == j,str_length(lastlist$udata$AA.JUNCTION[1]),
{temp2N2 = Opt(AminoCl(j-1))
temp2N2 = str_replace_all(temp2N2,"_"," ")
stringdist(temp2N1,temp2N2,method = "lv" )})
ffg2sim[i,j] = ifelse(i == j,str_length(lastlist$udata$AA.JUNCTION[1]),
{temp3N2 = Opt2(AminoCl(j-1),TRUE)
temp3N2 = str_replace_all(temp3N2,"_"," ")
stringdist(temp3N1,temp3N2,method = "lv" )})
}
}
toc()
ffg = matrix(vffg,nrow = (max(bo)+1),ncol = (max(bo)+1))
ffg2 = matrix(vffg2,nrow = (max(bo)+1),ncol = (max(bo)+1))
ffg2sim = matrix(vffg2sim,nrow = (max(bo)+1),ncol = (max(bo)+1))
toc()
#find max
ma =max(na.omit(as.vector(ffg)))
ffg[which(ffg == 0)] = ma #gia na mhn fainontai velakia pisw
ffg2 = str_length(lastlist$udata$AA.JUNCTION[1]) - ffg2
ffg2sim = str_length(lastlist$udata$AA.JUNCTION[1]) - ffg2sim
ffg3 = (2/str_length(lastlist$udata$AA.JUNCTION[1])) * ffg2 + (2/str_length(lastlist$udata$AA.JUNCTION[1])) * ffg2sim + (2 / ma) * (ma - ffg)
matrix.heatmap(ffg)
matrix.heatmap(ffg2)
matrix.heatmap(ffg2sim)
matrix.heatmap(ffg3)
thrt = "distance"
if(thrt == "Distance"){
thrtyp = ffg
}else if (thrt == "StrSimilarity"){
thrtyp = ffg2
}else{
thrtyp = ffg3
}
tempor = ffg
tempor2 = ffg2
tempor3 = ffg3
tempor[which(thrtyp > thr)] = 0
tempor2[which(thrtyp > thr)] = 0
tempor3[which(thrtyp> thr)] = 0
jhj = silhouette(Clus$level[1:(max(bo)+1)],t(tempor))
matches <- regmatches(unique(x$pathString), gregexpr("[[:digit:]]+", unique(x$pathString)))
for(i in 1:length(unique(x$pathString))){
ttt =jhj[as.numeric(unlist(matches[i])),3]
flag = FALSE
j = length(ttt)
mcl = length(ttt)
while(flag == FALSE){
if(ttt[j] >= ttt[j-1]){
tempor3[j-1,j] = 0
j = j - 1
}else{
mcl = j
flag = TRUE
}
if(j == 1){
flag = TRUE
}
}
print(mcl)
}
jjj = matrix(1,nrow = max(bo)+1,ncol = (max(bo)+1))
net0 <- graph_from_adjacency_matrix(jjj,mode = "upper")
net1 <- graph_from_adjacency_matrix(jjj,mode = "upper")
bb = vector(length = (max(bo)+1))
bb[1]=0
bb[2:length(bb)] = lastlist$clep[1:max(bo)]
#XRWMA
# Generate colors based on media type:
colrs <- c("#1E90FF", "#BA55D3", "#0000FF", "#557fd2", "#54d17e", "#8aad62", "#C6E2FF", "#e5e234", "#FFD700", "#00EE00", "#C1FFC1", "#ea8509", "#54FF9F", "#FF0000", "#ed3b1c", "#ed1c7a", "#0c0c0c", "#b8d8af", "#ED9121","#45f713")
colrs = colrs[1:(max(bb)+1)]
V(net0)$color <- colrs[bb+1]
V(net1)$color <- colrs[bb+1]
# Compute node degrees (#links) and use that to set node size:
deg <- (Clus$seqnum[1:length(bb)] / Clus$seqnum[1]) * 20
V(net0)$size <- deg
V(net1)$size <- deg
# The labels are currently node IDs.
# Setting them to NA will render no labels:
V(net0)$label <- V(net0)-1
V(net1)$label <- V(net1)-1
# Set edge width based on weight:
hhh = na.omit(as.vector(t(ffg3)))
hhh1 = na.omit(as.vector(t(tempor3)))
E(net0)$width <- hhh
E(net1)$width <- hhh1
#change arrow size and edge color:
E(net0)$arrow.size <- .2
E(net0)$edge.color <- "gray80"
E(net1)$arrow.size <- .2
E(net1)$edge.color <- "gray80"
pal1 <- rainbow(6, alpha=1)
if(netyp == "whole"){
net0.copy <- igraph::delete.edges(net0, which(E(net0)$width == 0))
plot(net0.copy, edge.color=na.omit(pal1[( E(net0.copy)$width %/% 1) +1]), edge.curved=.1, vertex.label.color = "black") #plot the network graph
legend("topleft", inset=c(0.1,0.2), colnames(df[str_which(names(df), "level.")])[1:(max(bb)+1)], pch=21,
col="#777777", pt.bg=colrs, pt.cex=2, cex=.8, bty="n", ncol=1)
legend("topright", inset=c(0.1,0.2), c("0-1","1-2","2-3","3-4","4-5","5"), pch=21,
col="#777777", pt.bg=pal1, pt.cex=2, cex=.8, bty="n", ncol=1,title = "Relationship strength")
}else{
net1.copy <- igraph::delete.edges(net1, which(E(net1)$width == 0))
plot(net1.copy, edge.color=na.omit(pal1[( E(net1.copy)$width %/% 1) +1]), edge.curved=.1, vertex.label.color = "black") #plot the network graph
legend("topleft", inset=c(0.1,0.2), colnames(df[str_which(names(df), "level.")])[1:(max(bb)+1)], pch=21,
col="#777777", pt.bg=colrs, pt.cex=2, cex=.8, bty="n", ncol=1)
legend("topright", inset=c(0.1,0.2), c("0-1","1-2","2-3","3-4","4-5","5"), pch=21,
col="#777777", pt.bg=pal1, pt.cex=2, cex=.8, bty="n", ncol=1,title = "Relationship strength")
}
}
silhouette(df$clusters,tempor[df$clusters,df$clusters])
silhouette(sort(df$clusters),tempor[sort(df$clusters),sort(df$clusters)])
silhouette(df$level.2,tempor[1:8,1:8])
sort(df$clusters)
unique(x$pathString)
matches <- regmatches(years, gregexpr("[[:digit:]]+", years))
as.numeric(unlist(matches))
ffg[which(ffg == 26)] = NA
ff2 = na.omit(as.vector(ffg3))
tt = str_locate_all(x$pathString,"/")
unlist(tt)[length(unlist(tt))]
for (i in 1:123) {
x$pathString[i] = as.numeric(str_sub(x$pathString[i],start = unlist(tt[i])[length(unlist(tt[i]))]+1, end = str_length(x$pathString[i])))
}
x$pathString
silhouette(as.numeric(x$pathString),tempor)
tempor[sort(unique(as.numeric(x$pathString))),sort(unique(as.numeric(x$pathString)))]
silhouette(sort(unique(as.numeric(x$pathString))),tempor[sort(unique(as.numeric(x$pathString))),sort(unique(as.numeric(x$pathString)))])
jhj = silhouette(Clus$level[1:(max(bo)+1)],t(tempor))
matches <- regmatches(unique(x$pathString), gregexpr("[[:digit:]]+", unique(x$pathString)))
for(i in 1:length(unique(x$pathString))){
ttt =jhj[as.numeric(unlist(matches[i])),3]
flag = FALSE
j = length(ttt)
mcl = length(ttt)
while(flag == FALSE){
if(ttt[j] >= ttt[j-1]){
tempor[j-1,j] = 0
j = j - 1
}else{
mcl = j
flag = TRUE
}
if(j == 1){
flag = TRUE
}
}
print(mcl)
}
ttt =jhj[as.numeric(unlist(matches)),3]
ttt[length(ttt)] > ttt[(length(ttt)-1)]