forked from LittleDuckH/Skin_Lesion_Classify_Web
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
132 lines (106 loc) · 4.92 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import argparse
import torch
import torch.optim as optim
from torch.utils.data import DataLoader
import numpy as np
from torch.autograd import Variable
import os
import time
import torch.nn.functional as F
import torch.nn as nn
from utils.dataset.isic import isic2018_dataset, augmentation_rand, augmentation_sim,augmentation_test
from utils.eval_metrics import ConfusionMatrix, Auc
from models.ecl import ECL_model,balanced_proxies
from models.loss import CE_weight,BHP
'''function for getting proxies number'''
def get_proxies_num(cls_num_list):
ratios = [max(np.array(cls_num_list)) / num for num in cls_num_list]
prototype_num_list = []
for ratio in ratios:
if ratio == 1:
prototype_num = 1
else:
prototype_num = int(ratio // 10) + 2
prototype_num_list.append(prototype_num)
assert len(prototype_num_list) == len(cls_num_list)
return prototype_num_list
def main(args):
if not os.path.exists(args.log_path):
os.makedirs(args.log_path)
if not os.path.exists(args.model_path):
os.makedirs(args.model_path)
log_file = open(os.path.join(args.log_path,'test_log.txt'), 'w')
'''print args'''
for arg in vars(args):
print(arg, getattr(args, arg))
print(arg, getattr(args, arg),file=log_file)
'''load models'''
model = ECL_model(num_classes=args.num_classes,feat_dim=args.feat_dim)
proxy_num_list = get_proxies_num(args.cls_num_list)
model_proxy = balanced_proxies(dim=args.feat_dim,proxy_num=sum(proxy_num_list))
if args.cuda:
model.cuda()
model_proxy.cuda()
print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0))
print("Model size: {:.5f}M".format(sum(p.numel() for p in model.parameters())/1000000.0),file=log_file)
print("Model_proxy size: {:.5f}M".format(sum(p.numel() for p in model_proxy.parameters())/1000000.0))
print("Model_proxy size: {:.5f}M".format(sum(p.numel() for p in model_proxy.parameters())/1000000.0),file=log_file)
print("=============model init done=============")
print("=============model init done=============",file=log_file)
'''load dataset'''
if args.dataset == 'ISIC2018':
test_iterator = DataLoader(isic2018_dataset(path=args.data_path, transform=augmentation_test, mode='test'),
batch_size=1, shuffle=False, num_workers=2)
else:
raise ValueError("dataset error")
try:
model.load_state_dict(torch.load(args.model_path),strict=True)
model.eval()
pro_diag, lab_diag = [], []
confusion_diag = ConfusionMatrix(num_classes=args.num_classes, labels=list(range(args.num_classes)))
with torch.no_grad():
for batch_index, (data, label) in enumerate(test_iterator):
if args.cuda:
data = data.cuda()
label = label.cuda()
diagnosis_label = label.squeeze(1)
output = model(data)
predicted_results = torch.argmax(output, dim=1)
pro_diag.extend(output.detach().cpu().numpy())
lab_diag.extend(diagnosis_label.cpu().numpy())
confusion_diag.update(predicted_results.cpu().numpy(), diagnosis_label.cpu().numpy())
print("Test confusion matrix:")
print("Test confusion matrix:",file=log_file)
confusion_diag.summary(log_file)
print("Test AUC:")
print("Test AUC:",file=log_file)
Auc(pro_diag, lab_diag, args.num_classes, log_file, task='test')
except Exception:
import traceback
traceback.print_exc()
finally:
log_file.close()
parser = argparse.ArgumentParser(description='Training for the classification task')
#dataset
parser.add_argument('--data_path', type=str, default='./data/ISIC2018/', help='the path of the data')
parser.add_argument('--dataset', type=str, default='ISIC2018', help='the name of the dataset')
parser.add_argument('--model_path', type=str, default = './results/ISIC2018/model_100.pth', help='the path of the model')
parser.add_argument('--log_path', type=str, default = './logs/ISIC2018', help='the path of the log')
# training parameters
parser.add_argument('--cuda', type=bool, default=True, help='whether to use cuda')
parser.add_argument('--seed', type=int, default=2024, help='random seed')
parser.add_argument('--gpu', type=str, default='0', help='gpu device ids for CUDA_VISIBLE_DEVICES')
# hyperparameters for model
parser.add_argument('--feat_dim', dest='feat_dim', type=int, default=128)
if __name__ == '__main__':
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
if args.dataset == 'ISIC2018':
args.cls_num_list = [84, 195, 69, 4023, 308, 659, 667]
args.num_classes = 7
else:
raise Exception("Invalid dataset name!")
if args.log_path is None:
args.log_path = args.model_path
main(args)
print("Done!")