-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmesh.cpp
169 lines (150 loc) · 5.63 KB
/
mesh.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#include "mesh.h"
#include "ply_read.h"
#include "geometry_util.h"
#include "ray_slab.h"
using namespace std;
using namespace Eigen;
Mesh::Mesh() {
}
void Mesh::readPlyFile(const char *file) {
ply_reader::t_ply_result ply_result;
ply_reader::read_all_in_ply(file, ply_result);
faceID face_startID = face_index.size();
vertexID vertex_startID = vertices.size();
face_index.resize(face_startID + ply_result.face_index.size());
for (faceID i = 0; i < ply_result.face_index.size(); i++) {
vertexID v0 = ply_result.face_index[i][0];
vertexID v1 = ply_result.face_index[i][1];
vertexID v2 = ply_result.face_index[i][2];
face_index[i + face_startID][0] = v0 + vertex_startID;
face_index[i + face_startID][1] = v1 + vertex_startID;
face_index[i + face_startID][2] = v2 + vertex_startID;
}
face_normals.resize(face_startID + ply_result.face_index.size());
vertices.resize(vertex_startID + ply_result.vertices.size());
vertex_to_face.resize(vertex_startID + ply_result.vertices.size());
vertex_normals.resize(vertex_startID + ply_result.vertices.size());
size_t i = vertex_startID;
for (auto &v : ply_result.vertices) {
vertices[i][0] = v[0];
vertices[i][1] = v[1];
vertices[i][2] = v[2];
i++;
}
for (faceID i = face_startID; i < face_index.size(); i++) {
vertexID index0 = face_index[i][0];
vertexID index1 = face_index[i][1];
vertexID index2 = face_index[i][2];
vertex_to_face[index0].push_back(i);
vertex_to_face[index1].push_back(i);
vertex_to_face[index2].push_back(i);
Vector3f &v0 = vertices[index0];
Vector3f &v1 = vertices[index1];
Vector3f &v2 = vertices[index2];
float rect_min[3], rect_max[3];
rect_min[0] = min(v0[0], min(v1[0], v2[0]));
rect_min[1] = min(v0[1], min(v1[1], v2[1]));
rect_min[2] = min(v0[2], min(v1[2], v2[2]));
rect_max[0] = max(v0[0], max(v1[0], v2[0]));
rect_max[1] = max(v0[1], max(v1[1], v2[1]));
rect_max[2] = max(v0[2], max(v1[2], v2[2]));
tree.Insert(rect_min, rect_max, i);
Vector3f n = (v1 - v0).cross(v2 - v0);
n.normalize();
face_normals[i] = n;
}
for (i = vertex_startID; i < vertex_to_face.size(); i++) {
std::vector<faceID> &face_list = vertex_to_face[i];
Vector3f n(0.0, 0.0, 0.0);
for (faceID face : face_list)
n += face_normals[face];
n /= face_list.size();
n.normalize();
vertex_normals[i] = n;
}
}
Eigen::AlignedBox3f Mesh::getBoundingBox() const {
float min[3], max[3];
tree.GetBoundingBox(min, max);
Eigen::Vector3f vmin = {min[0], min[1], min[2]};
Eigen::Vector3f vmax = {max[0], max[1], max[2]};
return Eigen::AlignedBox3f(vmin, vmax);
}
bool Mesh::rayIntersect(const Vector3f &rayO, const Vector3f &rayD, IntersectReport &report) const {
struct RaySimple {
float O[3], D[3];
} ray;
ray.O[0] = rayO[0];
ray.O[1] = rayO[1];
ray.O[2] = rayO[2];
ray.D[0] = rayD[0];
ray.D[1] = rayD[1];
ray.D[2] = rayD[2];
MyTree::intersect_test intersectFun = [](void *userData, MyTree::Rect *rect) -> bool {
RaySimple *p = static_cast<RaySimple *>(userData);
return slab_test_3d<float>(p->O, p->D, rect->m_min, rect->m_max);
};
vector<faceID> suspects;
MyTree::t_resultCallback suspect_callback =
[](faceID value, void *suspects) -> bool {
vector<faceID> *p = static_cast<vector<faceID> *>(suspects);
p->push_back(value);
return true;
};
int count = tree.Search_user_defined(static_cast<void *>(&ray), intersectFun, suspect_callback, &suspects);
if (count > 0) {
Eigen::Vector3f v1, v2, v3, O, D;
O[0] = ray.O[0];
O[1] = ray.O[1];
O[2] = ray.O[2];
D[0] = ray.D[0];
D[1] = ray.D[1];
D[2] = ray.D[2];
D.normalize();
float distance = numeric_limits<float>::max();
faceID id;
bool found = false;
Vector3f intersect_point;
Vector3f closest_intersect_point;
float u, v, w;
for (faceID i : suspects) {
v1 = vertices[face_index[i][0]];
v2 = vertices[face_index[i][1]];
v3 = vertices[face_index[i][2]];
float d, uu, vv, ww;
if (ray_triangle_intersect(v1, v2, v3, rayO, rayD, &d, &intersect_point, &uu, &vv, &ww)) {
if (d < distance) {
found = true;
id = i;
closest_intersect_point = intersect_point;
u = uu, v = vv, w = ww;
}
distance = std::min(distance, d);
}
}
if (found) {
vertexID v0 = face_index[id][0];
vertexID v1 = face_index[id][1];
vertexID v2 = face_index[id][2];
report.normal = vertex_normals[v0] * w + vertex_normals[v1] * u + vertex_normals[v2] * v;
report.normal.normalize();
// report->normal = face_normals[id];
report.intersect_point = closest_intersect_point;
report.t = distance;
return true;
}
}
return false;
}
Mesh::Face Mesh::getFace(faceID id) const {
Face f;
f.v0 = vertices[face_index[id][0]];
f.v1 = vertices[face_index[id][1]];
f.v2 = vertices[face_index[id][2]];
return f;
}
bool Mesh::rayIntersectWithIntervals(const Eigen::Vector3f &rayO,
const Eigen::Vector3f &rayD,
DisjointIntervals &intervals) const {
throw; // not implemented
}